Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well-being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities. We review socioeconomic indicators that have been modeled at the commercial scale or mea-sured at the pilot or laboratory scale, as well as factors that affect them, and discuss additional indicators that should be measured during commercialization to form a more complete picture of socioeconomic sustainability of algal biofuels. Indicators estimated in the scientific literature include the profitability indicators, return on investment (ROI) and net present value (NPV), and the resource conservation indicator, fossil energy return on investment (EROI). These modeled indicators have clear sustainability targets and have been used to design sustainable algal biofuel systems. Factors affecting ROI, NPV, and EROI include infrastructure, process choices, and financial assumptions. The food security indicator, percent change in food price volatility, is probably zero where agricultural lands are not used for production of algae-based biofuels; however, food-related coproducts from algae could enhance food security. The energy security indicators energy security premium and fuel price volatility and external trade indicators terms of trade and trade volume cannot be projected into the future with accuracy prior to commercialization. Together with environmental sustainability indicators, the use of a suite of socioeconomic sustainability indicators should contribute to progress toward sustainability of algal biofuels
algae
For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management. Major differences between algae and terrestrial plant feedstocks, as well as their supply chains for biofuel, are highlighted, for they influence the choice of appropriate sustainability indicators. Algae strain selection characteristics do not generally affect which indicators are selected. The use of water instead of soil as the growth medium for algae determines the higher priority of water- over soil-related indicators. The proposed set of environmental indicators provides an initial checklist for measures of algal biofuel sustainability but may need to be modified for particular contexts depending on data availability, goals of stakeholders, and financial constraints. Use of these indicators entails defining sustainability goals and targets in relation to stakeholder values in a particular context and can lead to improved management practices.
NOAA's National Centers for Coastal Ocean Science's (NCCOS's) PCMHAB program funds research to move promising technologies for preventing, controlling, or mitigating HABs and their impacts through development, to demonstration, and, finally application, culminating in wide spread use in the field by end-users. A more detailed description of the program and its projects are available at the link below.
National biomass feedstock assessments (Perlack et al., 2005; DOE, 2011) have focused on cellulosic biomass resources, and have not included potential algal feedstocks. Recent research (Wigmosta et al., 2011) provides spatially-‐explicit information on potential algal biomass and oil yields, water use, and facility locations. Oak Ridge National Laboratory and Pacific Northwest National Lab are collaborating to integrate terrestrial and algal feedstock resource assessments. This poster describes preliminary results of this research.
Algae feedstocks for alternative fuels production are not economically competitive with fossil fuels at the present time. Furthermore, it has not yet been demonstrated that algae production systems offer improved sustainability characteristics.
Algae does have potential as a feedstock for biofuels. Depending on their composition, different algae species may be suitable for a range of biofuels. Additionally, algal biomass productivity per hectare could eventually be higher than for terrestrial energy crops. Last but not least, algae can be cultivated at sea or on non-arable land, so there is no competition with current food production.
These reasons justify attention to algal biofuels from researchers, industries and (governmental) policy makers. The research that forms the basis of this report leads to the conclusion that the following issues are important to consider in policymaking on algal biofuels:
Algal biofuels are in an early stage of development. Current expectations for the future are based on estimates and extrapolation of small-scale production and results of laboratory work. Progress needs to be demonstrated that higher productivity, commercial scale systems, exhibiting improved economics and sustainability attributes are achievable.
It is too early to select preferred algal fuel pathways and technologies. In practice there will not be one preferred production method for all situations. Different local circumstances, such as climatic conditions, the availability of fresh or salt water, and the proximity of suitable CO2 resources will likely have different optimum solutions.
Algae production will not be possible in quite a few regions of the world. High productivity rates will require good solar irradiance, a narrow and suitable temperature range, good water supply, adequate CO2 resources, and sufficient flat land. The locations where all of the appropriate resources are available need to be identified.
Sustainability criteria must be developed for algal biofuels. Besides the energy, environmental, and ecological issues that are addressed in this report, criteria should be defined on issues not addressed in this report such as economic prosperity and social well-being.
It has been shown that under specific conditions, the algal biofuel production and distribution chain may have a net energy output, but further energy analysis of many different algae fuel chains is needed.
Algal biofuel policies and projects should aim to reduce fossil energy consumption and the environmental burden compared to conventional fuels. In parallel, these efforts should result in acceptable impacts on ecosystems. Therefore, many government agencies that fund pilot projects are requiring a complete sustainability analysis prior to construction and operations. During the execution of the project, energy consumption and emissions should be measured to ensure that actual measurements are consistent with those in the sustainability analysis and to collect inputs for later LCA analyses.
Based on the high level of innovation demonstrated within the algal biofuels industry in just the past decade, it is likely that new, refined, or even breakthrough technologies will continue to be introduced in the future. In fact, the introduction of these innovations will be critical if the sector is ultimately going to achieve commercial success. It is important that industry stakeholders and policymakers remain open to new algal species, processes, and fuels besides the ones that are being considered today.
Fast-growing, oil-producing species of microalgae have become the focus of attention for both biomass and biodiesel biofuels, but questions remain about scalability, economics, and the competition between large-scale microalgae cultivation and agriculture, with regard to water, fertilizer, and land use. By cultivating microalgae on domestic wastewater, the water and fertilizer problems can be overcome, and by using algae for improved wastewater treatment, economic and environmental benefits can be realized. Land use for traditional large-scale algae cultivation systems, open ponds and closed photobioreactors (PBRs), continues to be a formidable challenge, however.
Assuming that algae production must be linked to existing wastewater treatment facilities and given that these facilities are deeply embedded in urban infrastructure, the integration of algae production into exiting urban infrastructure is both prohibitive in cost and unrealistic to implement. Alternatively, installing algae production in remote locations at great distances from the wastewater facilities requires significant investments in pipelines and transport infrastructures as well as in energy for pumping water and delivering materials. Could the solution for a practical and affordable large-scale algae production system, linked to wastewater treatment be located offshore, at least for coastal cities?
We propose a system called OMEGA (Offshore Membrane Enclosures for Growing Algae), consisting of floating photobioreactors (PBRs) made of flexible plastic sheets welded into a series of interconnected chambers. The modular PBRs are attached to each other to form a system that is attached to moorings or tethered to piers. If necessary, the system is protected by a breakwater.
The OMEGA PBRs are filled with secondary-treated wastewater redirected from established outfalls and inoculated with oil-producing freshwater algae. Nearby Power Plants or other sources of fossil fuel combustion provide CO2 to stimulate algae growth. Unlike land-based PBRs, which require significant energy input for mixing and temperature control, OMEGA uses surface waves for mixing and the heat capacity of the surrounding water for temperature control. The salinity difference between wastewater and seawater is used for forward osmosis, which 1) concentrates nutrients in the wastewater, stimulating algae growth; 2) dewaters the algae, facilitating harvesting; and 3) cleans the wastewater released into the surrounding environment. If the cultivated freshwater algae accidentally escape into the surrounding, seawater they pose no threat to the marine environment, as they cannot survive in saltwater.
While the proposed OMEGA system overcomes many of the difficulties inherent in existing land-based algae cultivation, there remain long-standing challenges in biology, engineering, environmental impact, and politics. Some of these challenges are associated with algae cultivation in general (e.g., growth control, grazers, pathogens, and dewatering) and others with OMEGA in particular (e.g., materials, permitting, fouling, marine mammals). These issues and others are under investigation as part of an OMEGA feasibility study supported by grants from NASA ARMD and the California Energy Commission. The purpose of this paper is to evaluate if indeed the future of algae biofuels is offshore?
Meeting the Energy Independence and Security Act (EISA) renewable fuels goals requires development
of a large sustainable domestic supply of diverse biomass feedstocks. Macroalgae, also known as
seaweed, could be a potential contributor toward this goal. This resource would be grown in marine
waters under U.S. jurisdiction and would not compete with existing land-based energy crops.
Very little analysis has been done on this resource to date. This report provides information needed for an
initial assessment of the development of macroalgae as a feedstock for the biofuels industry.
The findings suggest that the marine biomass resource potential for the United States is very high based
on the surface area of the marine waters of the U.S. and rates of commercial macroalgae production in
other parts of the world. However, macroalgae cultivation for fuels production is likely a long term effort.
Analysis of the available data showed that considerable scale up in cultivation over current world-wide
production and improvements in processing throughout the supply chain are needed.
Despite the high resource potential, the United States does not currently have a macroalgae production
industry and would have to develop this capability. In order to meet current renewable fuels goals, the
scale of the effort would have to be high in comparison with activity in other parts of the world. For
example, replacing 1% of the domestic gasoline supply with macroalgae would require annual production
rates about ten and one-half times current worldwide production. This could be accomplished through
cultivation on 10,895 km2 of ocean surface, based on current rates of production reported for the
international macroalgae cultivation industry. Advances in cultivation technology already being tested
could potentially increase production from three to ten fold with a corresponding decrease in the area
needed for cultivation to meet specified production goals. While it is no surprise that the cost estimates to
produce fuel from macroalgae are currently high, it should be noted that this is based on a limited amount
of available data and that production costs for macroalgae can benefit from increased efficiency and scale.
A thorough analysis is warranted due to the size of this biomass resource and the need to consider all
potential sources of feedstock to meet current biomass production goals. Understanding how to harness
this untapped biomass resource will require additional research and development. A detailed assessment
of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with
existing energy supply chains, and the associated economic and life cycle analyses will facilitate
evaluation of this potentially important biomass resource.
This model was developed at Idaho National Laboratory and focuses on crop production. This model is an agricultural cultivation and production model, but can be used to estimate biomass crop yields.
The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific,
economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems’ infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming.