Skip to main content

renewable energy

Synthesis manuscript for an Ecology & Society Special Feature on Telecoupling: A New Frontier for Global Sustainability

Abstract: European demand for renewable energy resources has led to rapidly increasing transatlantic exports of wood pellets from the southeastern United States (SE US) since 2009. Disagreements have arisen over the global greenhouse gas reductions associated with replacing coal with wood, and groups on both sides of the Atlantic Ocean have raised concerns that increasing biomass exports might negatively affect SE US forests and the ecosystem services they provide. We use the telecoupling framework to test assertions that the intended benefits of the wood pellet trade for Europe might be offset by negative consequences in the SE US. Through a review of current literature and available data sets, we characterize the observed and potential changes in the environmental, social, and economic components of the sending and receiving regions to assess the overall sustainability of this renewable energy system. We conclude that the observed transatlantic wood pellet trade is an example of a mutually beneficial telecoupled system with the potential to provide environmental and socioeconomic benefits in both the SE US and Europe despite some negative effects on the coal industry. We recommend continued monitoring of this telecoupled system to quantify the environmental, social, and economic interactions and effects in the sending, receiving, and spillover systems over time so that evidence-based policy decisions can be made with regard to the sustainability of this renewable energy pathway.

Citation: Parish, E. S., A. J. Herzberger, C. C. Phifer and V. H. Dale. 2018. Transatlantic wood pellet trade demonstrates telecoupled benefits. Ecology and Society 23 (1):28. [online] URL:https://www.ecologyandsociety.org/vol23/iss1/art28/

Contact Phone
Publication Date
Project Title
Bioenergy Sustainability: How to Define and Measure it
Contact Email
parishes@ornl.gov
DOI
doi.org/10.5751/ES-09878-230128
Contact Person
Esther S. Parish
Contact Organization
Oak Ridge National Laboratory
Bioenergy Category
Author(s)
Esther Parish, Environmental Sciences Division, Oak Ridge National Laboratory , Anna Herzeberger, Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University , Colin Phifer, School of Forest Resources and Environmental Science, Michigan Technological University , Virginia Dale, Environmental Sciences Division, Oak Ridge National Laboratory
WBS Project Number
4.2.2.40
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Abstract

The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, ‘How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?’ To address this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management.

Contact Phone
Publication Date
Contact Email
Dalevh@ornl.gov
DOI
doi: 10.1111/gcbb.12445
Contact Person
Virginia H. Dale
Contact Organization
Oak Ridge National Laboratory
Author(s)
Dale VH , KL Kline , ES Parish , AL Cowie , R Emory , RW Malmsheimer , R Slade , CT Smith , TB Wigley , NS Bentsen , G Berndes , P Bernier , M Brandão , H Chum , R Diaz-Chavez , G Egnell , L Gustavsson , J Schweinle , I Stupak , P Trianosky , A Walter , C Whittaker , M Brown , G Chescheir , I Dimitriou , C Donnison , A Goss Eng , KP Hoyt , JC Jenkins , K Johnson , CA Levesque , V Lockhart , MC Negri , JE Nettles , M Wellisch
Subscribe to renewable energy