Skip to main content

KDF Search Results

Displaying 21 - 40 of 716

New domestic, renewable energy resources must be considered to increase energy security in the U.S. Ethanol production through second-generation (cellulosic) feedstocks will help the U.S. meet the legislative Renewable Fuel Standard, which mandates 36 billion gallons of renewable fuels by 2022. However, conversion of cropland to meet the cellulosic feedstock production goals may have unforeseen environmental consequences.

Author(s):
David E. Gorelick , Latha M. Baskaran , Henriëtte I. Jager

Logging and mill residues are currently the largest sources of woody biomass for bioenergy in the US, but short-rotation woody crops (SRWCs) are expected to become a larger contributor to biomass production, primarily on lands marginal for food production. However, there are very few studies on the environmental effects of SRWCs, and most have been conducted at stand rather than at watershed scales.

Organization:
DOE
Author(s):
Natalie A. Griffiths , Benjamin M. Rau , Kellie B. Vache , Gregory Starr , Menberu M. Bitew , Doug P. Aubrey , James A. Martin , Elizabeth Benton , C. Rhett Jackson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this research project was to assess whether standard forestry best management practices (BMPs) are sufficient to protect stream water quality from intensive silviculture associated with short-rotation woody crop (SRWC) production for bioenergy. Forestry BMPs are designed to prevent the movement of deleterious quantities of nutrients, herbicides, sediments, and thermal energy (sunlight hitting stream channels) from clear-cuts and plantations to surface waters.

Organization:
DOE
Author(s):
Natalie A. Griffiths , C. Rhett Jackson , John I. Blake , Johnson Jeffers , Benjamin M. Rau , Gregory Starr , Kellie Vache
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author(s):
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author(s):
Jager, Henriette I , Efroymson, Rebecca A.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This workshop examines the potential benefits, feasibility, and barriers to the use of biofuels in place of heavy fuel oil (HFO) and marine gas oil for marine vessels. More than 90% of world’s shipped goods
travel by marine cargo vessels powered by internal combustion (diesel) engines using primarily low-cost residual HFO, which is high in sulfur content. Recognizing that marine shipping is the largest source of

Organization:
DOE
Author(s):
Mike Kass , Zia Abdullah , Mary Biddy , Corinne Drennan , Troy Hawkins , Susanne Jones , Johnathan Holladay , Dough Longman , Emily Newes , Tim Theiss , Tom Thompson , Michael Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Producing renewable fuel from dedicated energy crops, such as switchgrass, has the potential to generate localized environmental benefits. This study uses high-resolution spatial data for west Tennessee to quantify the effects of producing switchgrass for cellulosic ethanol on the grey water footprint (GWF), or the amount of freshwater needed to dilute nitrate leachate to a safe level, relative to existing agricultural production.

Author(s):
Zhong, J. , T. E. Yu , C. D. Clark , B. C. English , J. A. Larson , C. L. Cheng

Switchgrass (Panicum virgatum L.), a native of the North American prairies, has been selected for bioenergy research. With a focus on biomass yield improvement, this study aim (i) to estimate the genetic variation in biomass yield and important agronomic traits in ‘Alamo’, (ii) to determine correlations between biomass yield and agronomic traits, and (iii) to compare efficiency of phenotypic selection from a sward plot and advanced cycle half-sibs (ACHS) on the basis of space-plant performance.

Author(s):
Dalid, C. , A. M. Saxton , F. L. Allen , V. R. Pantalone , S. Nayak , H. Bhandari

Despite of the key role that short rotation woody crops (SRWC) play in supporting bioenergy and the bioeconomy, questions arise about the sustainability of bioenergy. Is it net energy efficient? Is bioenergy carbon neutral? Do SRWC plantations adversely affect food security by competing for land with agriculture? How will SRWC affect biodiversity and provision of environmental services? Answers are elusive and definitive answers require considering specific technology applied at a specific location.

Author(s):
Stanturf J. , T. M. Young , J. H. Perdue

This data article focuses on sustainability indicators for bioenergy generation from Brazilian Amazon׳s non-woody native biomass sources, considered to be modern forms of biomass. In the construction of the indicators, the Indicator-based Framework for Evaluation of Natural Resource Management Systems (MESMIS, from the original Spanish) method was used, with the application of the seven sustainability attributes to identify critical points and limiting and favorable factors for sustainability.

Author(s):
Josmar Almeida Flores , Odorico Konrad , Cíntia Rosina Flores , Nádia Teresinha Schroder

This is a joint report between three national labs, ORNL, INL, and ANL, that describes outcomes from a workshop. The Bioenergy Solutions to Gulf Hypoxia Workshop gathered stakeholders from industry, academia, national laboratories, and U.S. federal agencies to discuss how biomass feedstocks could help decrease nutrient loadings to the Gulf of Mexico (Gulf), a root cause of the large hypoxic zone that forms each summer.

Author(s):
Henriette Jager , Christina Negri , Leslie Ovard , Shyam Nair
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Reducing dependence on fossil‐based energy has raised interest in biofuels as a potential energy source, but concerns have been raised about potential implications for water quality. These effects may vary regionally depending on the biomass feedstocks and changes in land management. Here, we focused on the Tennessee River Basin (TRB), USA.

Organization:
DOE
Author(s):
Wang, Gangsheng , Jager, Henriette
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Highlights
• Opportunities to improve coproduction of wildlife and biomass-for-energy exist at multiple spatial scales.

• At the landscape scale, we review strategies for increasing biodiversity in biomass production systems, drawing examples from plantations, dedicated perennial grasses, and forest thinning systems in the Americas.

• At the scale of one land owner, we describe wildlife-friendly practices to promote land sharing for each production system.

Organization:
DOE
Author(s):
Jager, Henriette I , Kreig, Jasmine
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The biobased economy is playing an increasingly important role in the American economy.

Through innovations in renewable energies and the emergence of a new generation of biobased products, the sectors that drive the biobased economy are providing job creation and economic growth. To further understand and analyze trends in the biobased economy, this report compares 2011 and 2016 report data.

Organization:
USDA
Author(s):
Jay S. Golden , Robert Handfield , Janire Pascual-Gonzalez , Ben Agsten , Taylor Brennan , Lina Khan , Emily True

Join the U.S. Department of Energy’s Bioenergy Technologies Office on Dec. 6, 2018, at 1 p.m. CST for a webinar on “Biomass Production and Water Quality in the Mississippi River Basin.” In this webinar, Argonne National Laboratory and Oak Ridge National Laboratory will jointly present modeling and analyses of potential implications of biomass production on nutrients and sediments in each of the six tributaries of the Mississippi River Basin.

Organization:
DOE
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author(s):
Henriette I.Jager , Rebecca A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Ecological disturbances are occurring with greater frequency and intensity than in the past. Under projected shifts in disturbance regimes and patterns of recovery, societal and environmental impacts are expected to be more extreme and to span larger spatial extents. Moreover, preexisting conditions will require a longer time to re‐establish, if they do so at all. The word “unprecedented” is appearing more often in news reporting on droughts, fires, hurricanes, tsunamis, ice storms, and insect outbreaks.

Organization:
DOE
Author(s):
Virginia H Dale , Henriette I Jager , Amy K Wolfe , Rebecca A Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Policy makers are interested in estimates of the potential economic impacts of oil price shocks, particularly during periods of rapid and large increases that accompany severe supply shocks. Literature estimates of the economic impacts of oil price shocks, summarized by the oil price elasticity of GDP, span a very wide range due to both fundamental economic and methodological factors. This paper presents a quantitative meta-analysis of the oil price elasticity of GDP for net oil importing countries, with a focus on the United States (US).

Organization:
DOE
Author(s):
Gbadebo A.Oladosu , Paul N.Leiby , David C.Bowman , Rocio Uría-Martínez , Megan M.Johnson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline.

Organization:
DOE
Author(s):
Michael D. Kass , Christopher J. Janke , Raynella M. Connatser , Samuel A. Lewis Sr. , James R. Keiser , Katherine Gaston
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.