This International Feedstocks data portal supports the Global Biomass Resource Assessment, a multi-country government-led initiative dedicated to advancing the global transition to a sustainable bio-based economy. This product shares data assembled from citable sources around the globe, as reported for current biomass production as well as potential additional future production in some cases.
Filter by Category
Filter by Keywords
Filter by Lab
Filter by Organization
KDF Search Results
This write up summarizes the potential for biobased adhesives to be sourced from various material, specifically focusing on the following relevant factors:
1. Current biomass availability,
2. Market costs
3. Locations of industry/supply
4. Projections on how these materials will increase in availability according to their expected increased uses.
This project contributes to understanding and enhancing socioeconomic and environmental benefits of biofuels through modeling the effect of prices and policy incentives on fuel markets for “hard-to-decarbonize” transportation sectors. The main analytical tool used in this project is the BioTrans model, originally developed to assess and quantify the economic and energy security benefits of biofuels for light-duty vehicles and bioproducts.
This dataset contains data on forest production. The forestry products in this dataset includes hardwood, softwood, and mixed, and the dataset was obtained from the database of the 2023 Billion-Ton Report (Davis et al., 2024). The intended use is for the Feedstock Production Emissions to Air Model (FPEAM).
If you would also like access to this dataset, please use the "contact" button for a request to our research staff.
This dataset provides additional variables for modelers and other interested stakeholders for yield assumptions for modeled energy crops on agricultural land in the CONUS, as modeled by the POLYSYS model.
The yield unit was changed from lb/ac to dt/ac post-processing.
V0.1 changes include: tillage for subclass like 'energy crop' is now '[null]' and for subclass = 'Intermediate oilseeds' 'till' is now 'CT' (Conventional Tillage), format now uses pipe (|) delimiter.
This dataset includes waster resources prepared for BT23 Chapter 3. Please access the data through the BT23 Data Portal or directly at https://bioenergykdf.ornl.gov/bt23-wastes-download
Please cite as:
Milbrandt, A., and A. Badgett. 2024, Data from Biomass from waste streams, of Chapter 3 in the 2023 Billion-Ton Report. Version 0.0.1, Bioenergy Knowledge Discovery Framework (bioenergyKDF)Data Center, https://doi.org/10.23720/BT2023/2282886
This dataset includes ForSEAM and BioSUM model output prepared for BT23 Chapter 4, as well as USDA-FS Forest Inventory Analysis datasets used to calculate waste biomass from the forested land base. Please access the data through the BT23 Data Portal or directly at https://bioenergykdf.ornl.gov/bt23-forestry-download
A-customized-dataset-for-national-timberland-resources-modeled-with-ForSEAM
This dataset includes longitudinal measurements of water quality in four streams and rivers across the United States that were collected using the AquaBOT, an unmanned surface vehicle equipped with water quality sensors developed as part of a BETO-funded project ('Spatially resolved measurements of water quality indicators within a bioenergy landscape'). Measured water quality indicators include: nitrate concentration, temperature, specific conductivity, dissolved oxygen, turbidity, chlorophyll, and pH.
Short Rotation Woody Crop Production Scenarios Simulated for Idaho National Laboratory-ORNL Collaborations, June 2021.
Simulations under this dataset were targeted to a specific fuelshed in Iowa.
Integrated land management (ILM) applications were targeted under this research, although the results of these simulations are at the county level; downscaling post-processing will be applied.
The economic potential for Eucalyptus spp. production for jet fuel additives in the United States: A 20 year projection suite of scenarios ranging from $110 Mg-1 to $220 Mg-1 utilizing the POLYSYS model.
Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.
Price Scenarios at $54 and $119 were simulated for Switchgrass, Miscanthus and Willow production from 2017 to 2040. These analyses were used in Woodbury, Peter B., et al. 2018. "Improving water quality in the Chesapeake Bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production." Biomass and Bioenergy 114:132-142. doi: https://doi.org/10.1016/j.biombioe.2017.01.024.
This dataset was utilized in a report to highlight parameters that affect near-term sustainable supply of corn stover and forest resources at $56 and $74 per dry ton delivered. While the report focus is restricted to 2018, the modeling runs are available from 2016-2022. In the 2016 Billion-ton Report (BT16), two stover cases were presented. In this dataset, we vary technical levels of those assumptions to measure stover supply response and to evaluate the major determinants of stover supply.
This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).
This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).
This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).
This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).
Growing interest in renewable and domestically produced energy motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10-12 years) to achieve high yields.