This data product is an assembly of best available and citable information from around the globe on current biomass uses, and potential for additional sustainable biomass supplies. This dataset was compiled through an inventory and review of current sources of data and biomass resource assessments, including recent (since 2018) national, regional, and global assessments. An initial list of assessments identified (report version 1) have been assembled based on outreach and literature review.
Filter by Category
Filter by Keywords
Filter by Lab
Filter by Organization
KDF Search Results
This dataset provides additional variables for modelers and other interested stakeholders for yield assumptions for modeled energy crops on agricultural land in the CONUS, as modeled by the POLYSYS model.
The yield unit was changed from lb/ac to dt/ac post-processing.
V0.1 changes include: tillage for subclass like 'energy crop' is now '[null]' and for subclass = 'Intermediate oilseeds' 'till' is now 'CT' (Conventional Tillage), format now uses pipe (|) delimiter.
Data from emerging resources, CO2 from chapter 7.3 in the 2023 Billion-Ton Report. Please access the data through the BT23 Data Portal or directly at https://bioenergykdf.ornl.gov/bt23-co2-high-purity-download and https://bioenergykdf.ornl.gov/bt23-co2-total-supply-download
Data from Emerging Resources: Macroalgae. Please access the data through the BT23 Data Portal or directly at https://bioenergykdf.ornl.gov/bt23-macro-algae-download
Please cite as:
A. Coleman. 2024, Data from Emerging Resources: Macroalgae of Chapter 7.2 in the 2023 Billion-Ton Report. Version 0.0.1, Bioenergy Knowledge Discovery Framework (KDF) Data Center, https://doi.org/10.23720/BT2023/2282995
This dataset includes waster resources prepared for BT23 Chapter 3. Please access the data through the BT23 Data Portal or directly at https://bioenergykdf.ornl.gov/bt23-wastes-download
Please cite as:
Milbrandt, A., and A. Badgett. 2024, Data from Biomass from waste streams, of Chapter 3 in the 2023 Billion-Ton Report. Version 0.0.1, Bioenergy Knowledge Discovery Framework (bioenergyKDF)Data Center, https://doi.org/10.23720/BT2023/2282886
This dataset includes POLYSYS model output prepared for BT23 Chapter 5. Please access the data through the BT23 Data Portal or directly at https://bioenergykdf.ornl.gov/bt23-agricultural-download
This dataset includes ForSEAM and BioSUM model output prepared for BT23 Chapter 4, as well as USDA-FS Forest Inventory Analysis datasets used to calculate waste biomass from the forested land base. Please access the data through the BT23 Data Portal or directly at https://bioenergykdf.ornl.gov/bt23-forestry-download
A-customized-dataset-for-national-timberland-resources-modeled-with-ForSEAM
Short Rotation Woody Crop Production Scenarios Simulated for Idaho National Laboratory-ORNL Collaborations, June 2021.
Simulations under this dataset were targeted to a specific fuelshed in Iowa.
Integrated land management (ILM) applications were targeted under this research, although the results of these simulations are at the county level; downscaling post-processing will be applied.
Contact information about the submitter of this metadata record:
Author list: Maggie Davis, Matt Langholtz, Laurence Eaton, Chad Hellwinkel
Who should be contacted with questions relating to the data? (Principal investigator or primary developer of data product): Maggie Davis, davismr@ornl.gov
The economic potential for Eucalyptus spp. production for jet fuel additives in the United States: A 20 year projection suite of scenarios ranging from $110 Mg-1 to $220 Mg-1 utilizing the POLYSYS model.
Logging and mill residues are currently the largest sources of woody biomass for bioenergy in the US, but short-rotation woody crops (SRWCs) are expected to become a larger contributor to biomass production, primarily on lands marginal for food production. However, there are very few studies on the environmental effects of SRWCs, and most have been conducted at stand rather than at watershed scales.
The objective of this research project was to assess whether standard forestry best management practices (BMPs) are sufficient to protect stream water quality from intensive silviculture associated with short-rotation woody crop (SRWC) production for bioenergy. Forestry BMPs are designed to prevent the movement of deleterious quantities of nutrients, herbicides, sediments, and thermal energy (sunlight hitting stream channels) from clear-cuts and plantations to surface waters.
Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.
This is a joint report between three national labs, ORNL, INL, and ANL, that describes outcomes from a workshop. The Bioenergy Solutions to Gulf Hypoxia Workshop gathered stakeholders from industry, academia, national laboratories, and U.S. federal agencies to discuss how biomass feedstocks could help decrease nutrient loadings to the Gulf of Mexico (Gulf), a root cause of the large hypoxic zone that forms each summer.
Join the U.S. Department of Energy’s Bioenergy Technologies Office on Dec. 6, 2018, at 1 p.m. CST for a webinar on “Biomass Production and Water Quality in the Mississippi River Basin.” In this webinar, Argonne National Laboratory and Oak Ridge National Laboratory will jointly present modeling and analyses of potential implications of biomass production on nutrients and sediments in each of the six tributaries of the Mississippi River Basin.
Price Scenarios at $54 and $119 were simulated for Switchgrass, Miscanthus and Willow production from 2017 to 2040. These analyses were used in Woodbury, Peter B., et al. 2018. "Improving water quality in the Chesapeake Bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production." Biomass and Bioenergy 114:132-142. doi: https://doi.org/10.1016/j.biombioe.2017.01.024.