Skip to main content

KDF Search Results

Displaying 1 - 14 of 14

Logging and mill residues are currently the largest sources of woody biomass for bioenergy in the US, but short-rotation woody crops (SRWCs) are expected to become a larger contributor to biomass production, primarily on lands marginal for food production. However, there are very few studies on the environmental effects of SRWCs, and most have been conducted at stand rather than at watershed scales.

Organization:
DOE
Author(s):
Natalie A. Griffiths , Benjamin M. Rau , Kellie B. Vache , Gregory Starr , Menberu M. Bitew , Doug P. Aubrey , James A. Martin , Elizabeth Benton , C. Rhett Jackson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Growing interest in renewable and domestically produced energy motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10-12 years) to achieve high yields.

Author(s):
Natalie A. Griffiths , C. Rhett Jackson , Menberu M. Bitew , Allison M. Fortner , Kevin L. Fouts , Kitty McCracken , Jana R. Phillips
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This dataset reports the pre-treatment hydrology and pre- and post-treatment water quality data from a watershed-scale experiment that is evaluating the effects of growing short-rotation loblolly pine for bioenergy on water quality and quantity in the southeastern U.S. The experiment is taking place on the Savannah River Site, near New Ellenton, South Carolina, USA.  Beginning in 2010, water quality and hydrology were measured for two years in 3 watersheds (R, B, C).

Author(s):
Natalie A. Griffiths , C. Rhett Jackson , Jeffrey J. McDonnell , Julian Klaus , Enhao Du , Menberu M. Bitew , Allison M. Fortner , Kevin L. Fouts , Kitty McCracken , Jana R. Phillips
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this research project was to assess whether standard forestry best management practices (BMPs) are sufficient to protect stream water quality from intensive silviculture associated with short-rotation woody crop (SRWC) production for bioenergy. Forestry BMPs are designed to prevent the movement of deleterious quantities of nutrients, herbicides, sediments, and thermal energy (sunlight hitting stream channels) from clear-cuts and plantations to surface waters.

Organization:
DOE
Author(s):
Natalie A. Griffiths , C. Rhett Jackson , John I. Blake , Johnson Jeffers , Benjamin M. Rau , Gregory Starr , Kellie Vache
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This DOE BETO-funded research project examined the environmental effects of short-rotation loblolly pine (Pinus taeda) production for bioenergy in the southeastern US using a watershed-scale experiment in a before-after, control-impact design. Environmental measurements included water and soil quality, hydrology, tree productivity, and stand-level ecophysiology.

Global energy use projections predict that biomass will be an important source of renewable energy in the coming decades. Short-rotation woody crops will be the prime source of this biomass. However, the sustainability of woody crops has been questioned. Using internationally accepted forest sustainability criteria, an assessment of willow biomass crops indicates that they are sustainable compared to agricultural land and the fossil fuel-based energy systems they will replace.

Author(s):
Timothy A. Volk , Theo Verwijst , Pradeep J. Tharakan , Lawrence P. Abrahamso , Edwin H. White

Despite of the key role that short rotation woody crops (SRWC) play in supporting bioenergy and the bioeconomy, questions arise about the sustainability of bioenergy. Is it net energy efficient? Is bioenergy carbon neutral? Do SRWC plantations adversely affect food security by competing for land with agriculture? How will SRWC affect biodiversity and provision of environmental services? Answers are elusive and definitive answers require considering specific technology applied at a specific location.

Author(s):
Stanturf J. , T. M. Young , J. H. Perdue

Eucalyptus spp. is the world’s most widely planted hardwood species. It has been established and produced successfully in warmer regions of the U.S. for decades, and is positioned for commercialization as a biomass feedstock in the U.S. South. Plantation management options for Eucalyptus as a short-rotation woody crop include both single-stem and coppicing systems, with harvests every 3-7 years with average annual yields ranging from about 4 to 14 dry tons acre-1 year-1.

Nitrogen (N) is an important nutrient as it often limits productivity, but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flowpaths and biological transformations of N at the watershed scale.

Author(s):
Natalie A. Griffiths , C. Rhett Jackson , Jeffrey J. McDonnell , Julian Klaus , Enhao Du , Menberu M. Bitew
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The need to reduce the Nation’s dependence on foreign oil as a source of energy has been elevated in recent years as a national priority. To achieve this vision, efforts have focused on developing a broader portfolio of energy sources for domestic use. Renewable energy will play an important role in diversification, and considerable investment has been directed to advancing the commercial feasibility of these technologies.

Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. For example, integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment and nutrient loading in watersheds, and lower greenhouse gas fluxes.

Author(s):
Joshua Koch , David Muth , Kenneth Bryden

A landing page describing all key topics for BioFuel