This project contributes to understanding and enhancing socioeconomic and environmental benefits of biofuels through modeling the effect of prices and policy incentives on fuel markets for “hard-to-decarbonize” transportation sectors. The main analytical tool used in this project is the BioTrans model, originally developed to assess and quantify the economic and energy security benefits of biofuels for light-duty vehicles and bioproducts.
KDF Search Results
The U.S. Department of Energy’s (DOE’s) Co-Optimization (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D).
The database summarizes a very broad set of old and new standing biomass data from plantation-grown hardwoods and softwoods established under a wide range of conditions across the United States and Canada. The WCYP database, together with this document, is being published to disseminate information on what is available in the literature with respect to yield evaluations and to inform people that not all yield data in the open literature are suitable for evaluation of “potential” regional yields.
This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.
A woody crop yield potential (WCYP) database was created containing yield results with as much associated information as was available concerning the sites, soils, and experimental treatments. The database summarizes a very broad set of old and new standing biomass data from plantation-grown hardwoods and softwoods established under a wide range of conditions across the United States and Canada.
Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams.
Nationwide spatial dataset representing the polygon areas for first-generation suitability analysis of potentially suitable areas for microalgae open ponds. The PNNL microalgae growth model results for each site are included in the attribute table and assume growth based on theoretical limits. Sites represent a minimum mapping unit of 490 hectares. Land suitability included area less than or equal to 1% slope on non-agricultural, undeveloped or low‐density developed, nonsensitive, generally noncompetitive land was considered for microalgal culture facilities.
Microalgae are receiving increased global attention as a potential sustainable “energy crop”for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial‐scale algal biofuel production will place on water and land resources. We present a high‐resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and water resources are required, and how much energy is produced.
ORNL Report ORNL/TM-2010-120.
This is an article from Science Magazine from October 2008. Science-based policy is essential for guiding an environmentally sustainable approach to cellulosic biofuels. The May 2008 passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences.
We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.
A working paper review of current approaches to accounting for indirect land-use changes in green house gas balances of biofuels. This report reviews the current effort made worldwide to address this issue. A
description of land-use concepts is first provided (Section 2) followed by a classification of
ILUC sources (Section 3). Then, a discussion on the implications of including ILUC
emissions in the GHG balance of biofuel pathways (Section 4) and a review of methodologies
being developed to quantify indirect land-use change (Section 5) are presented. Section 6
Biofuels from land-rich tropical countries may help displace foreign petroleum imports for many industrialized nations, providing a possible solution to the twin challenges of energy security and climate change. But concern is mounting that crop-based biofuels will increase net greenhouse gas emissions if feedstocks are produced by expanding agricultural lands. Here we quantify the ?carbon payback time? for a range of biofuel crop expansion pathways in the tropics.
Land-use changes are frequently indicated to be one of the main human-induced factors influencing the groundwater system. For land-use change, groundwater research has mainly focused on the change in water quality thereby neglecting changes in quantity. The objective of this paper is to assess the impact of land-use changes, from 2000 until 2020, on the hydrological balance and in particular on groundwater quantity, as results from a case study in the Kleine Nete basin, Belgium.
In this paper we investigate the potential production and implications of a global biofuels industry. We develop alternative approaches to the introduction of land as an economic factor input, in value and physical terms, into a computable general equilibrium framework. Both approach allows us to parameterize biomass production in a manner consistent with agro-engineering information on yields and a ?second generation? cellulosic biomass conversion technology.
The harvest of corn stover or herbaceous crops as feedstocks for bioenergy purposes has been shown to have significant benefits from energy and climate change perspectives. There is a potential, however, to adversely impact water and soil quality, especially in Midwestern states where the biomass feedstock production would predominantly occur.
National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.
Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.
Power generation emits significant amounts of greenhouse gases (GHGs), mainly carbon dioxide (CO2). Sequestering CO2 from the power plant flue gas can significantly reduce the GHGs from the power plant itself, but this is not the total picture. CO2 capture and sequestration consumes additional energy, thus lowering the plant's fuel-to-electricity efficiency. To compensate for this, more fossil fuel must be procured and consumed to make up for lost capacity.