Skip to main content

KDF Search Results

Displaying 1 - 14 of 14

Logging and mill residues are currently the largest sources of woody biomass for bioenergy in the US, but short-rotation woody crops (SRWCs) are expected to become a larger contributor to biomass production, primarily on lands marginal for food production. However, there are very few studies on the environmental effects of SRWCs, and most have been conducted at stand rather than at watershed scales.

Organization:
DOE
Author(s):
Natalie A. Griffiths , Benjamin M. Rau , Kellie B. Vache , Gregory Starr , Menberu M. Bitew , Doug P. Aubrey , James A. Martin , Elizabeth Benton , C. Rhett Jackson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Corn’s (Zea mays L.) stover is a potential nonfood, herbaceous bioenergy feedstock. A vital aspect of utilizing stover for bioenergy production is to establish sustainable harvest criteria that avoid exacerbating soil erosion or degrading soil organic carbon (SOC) levels. Our goal is to empirically estimate the minimum residue return rate required to sustain SOC levels at numerous locations and to identify which macroscale factors affect empirical estimates.

Author(s):
Jane M. F. Johnson , Jeffrey M. Novak , Gary E. Varvel , Diane E. Stott , Shannon L. Osborne , Douglas L. Karlen , John A. Lamb , John Baker , Paul R. Adler

To prepare for a 2014 launch of commercial scale cellulosic ethanol production from corn/maize (Zea mays L.) stover, POET-DSM near Emmetsburg, IA has been working with farmers, researchers, and equipment dealers through “Project Liberty” on harvest, transportation, and storage logistics of corn stover for the past several years. Our objective was to evaluate seven stover harvest strategies within a 50-ha (125 acres) site on very deep, moderately well to poorly drained Mollisols, developed in calcareous glacial till.

Author(s):
Stuart J. Birrell , Douglas L. Karlen , Adam Wirt

Vimmerstedt, L. J., Bush, B. W., Hsu, D. D., Inman, D. and Peterson, S. O. (2014), Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: a system dynamics perspective. Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1515
 
 
To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Author(s):
NREL

Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits.

Author(s):
D. Muth, Jr. , K.M. Bryden

A global energy crop productivity model that provides geospatially explicit quantitative details on biomass
potential and factors affecting sustainability would be useful, but does not exist now. This study describes a
modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling.
We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized
natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and

Author(s):
SHUJIANG KANG
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Net benefits of bioenergy crops, including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. Life cycle assessments (LCA) for bioenergy crops have been conducted using models in which SOC information is usually from the top 30 to 40 cm. Information on the effects of crop management practices on SOC has been limited so LCA models have largely not included any management practice effects.

Author(s):
Ronald F. Follett , Kenneth P. Vogel , Gary E. Varvel , Robert B. Mitchell , John Kimble

In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance.

Author(s):
Laura J. Vimmerstedt , Brian W. Bush
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its costs competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by using the experience curve approach, scrutinizing costs of dry grind ethanol production over the timeframe 1980–2005. Cost reductions are differentiated between feedstock (corn) production and industrial (ethanol) processing.

Author(s):
W.G. Hettinga

A dry-grind ethanol from corn process analysis is performed. After defining a complete model of the process, a pinch technology analysis is carried out to optimise energy and water demands. The so-defined base case is then discussed in terms of production costs and process profitability. A detailed sensitivity analysis on the most important process and financial variables is carried out. The possibility to adopt different alternatives for heat and power generation combined to the process is evaluated.

Author(s):
Giada Franceschin

Production costs of bio-ethanol from sugarcane in Brazil have declined continuously over the last three decades. The aims of this study are to determine underlying reasons behind these cost reductions, and to assess whether the experience curve concept can be used to describe the development of feedstock costs and industrial production costs. The analysis was performed using average national costs data, a number of prices (as a proxy for production costs) and data on annual Brazilian production volumes.

Author(s):
J.D. van den Wall Bake

The important key technologies required for the successful biological conversion of lignocellulosic biomass to ethanol have been extensively reviewed. The biological process of ethanol fuel production utilizing lignocellulose as substrate requires: (1) delignification to liberate cellulose and hemicellulose from their complex with lignin, (2) depolymerization of the carbohydrate polymers (cellulose and hemicellulose) to produce free sugars, and (3) fermentation of mixed hexose and pentose sugars to produce ethanol.

Author(s):
Jeewon Lee