Skip to main content

KDF Search Results

Displaying 41 - 60 of 65

This is an article from Science Magazine from October 2008. Science-based policy is essential for guiding an environmentally sustainable approach to cellulosic biofuels. The May 2008 passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences.

Author(s):
Robertson G. Philip

When we think about sustainable bioenergy feedstocks in the United States, we ask ourselves what we will grow, where we will grow it, and how much we will grow. We also must consider the local as well as the broad-scale implications. From the perspective of landscape ecology, we tend to look at the broader scales.  It is one of the big challenges of bioenergy, not just looking at what happens to the local farmer but thinking about broader implications. From a global perspective, we also need to ask the same questinos, how much, what type and where?

"Sustainable development," according to the United Nations' World Commission on Environment and Development, "meets the needs of the present without compromising the needs of the future generations." It is hard to argue with the idea of sustainability when it is couched in these terms. Beyond this broad and highly idealized view of sustainable development lies a more problematic definition-one that recognizes sustainable development as a careful balancing act among issues of environmental protection, public health and safety, and sound economic development.

Author(s):
Finkelstein, M.

We present a system dynamics global LUC model intended to examine LUC attributed to biofuel production. The model has major global land system stocks and flows and can be exercised under different food and biofuel demand assumptions. This model provides insights into the drivers and dynamic interactions of LUC, population, dietary choices, and biofuel policy rather than a precise number generator.

Land-use change (LUC) is a contentious policy issue because of its uncertain, yet potentially substantial, impact on bioenergy climate change benefits. Currently, the share of global GHG emissions from biofuels-induced LUC is small compared to that from LUC associated with food and feed production and other human-induced causes. However, increasing demand for biofuels derived from feedstocks grown on agricultural land could increase this contribution. No consensus has emerged on how to appropriately isolate and quantify LUC impacts of bioenergy from those of other LUC drivers.

Increasing demand for crop-based biofuels, in addition to other human drivers of land use, induces direct and indirect land use changes (LUC). Our system dynamics tool is intended to complement existing LUC modeling approaches and to improve the understanding of global LUC drivers and dynamics by allowing examination of global LUC under diverse scenarios and varying model assumptions. We report on a small subset of such analyses.

Reducing “Energy Poverty” is increasingly acknowledged as the “Missing Development Goal”. This is because access to electricity and modern energy sources is a basic requirement to achieve and sustain decent and sustainable living standards. It is essential for lighting, heating and cooking, as well as for education, modern health treatment and productive activities, hence food security and rural development.

The major opportunities to reduce fossil carbon dioxide (CO2) emissions involve improving the efficiency with which energy is used and making the transition to alternative sources of energy and materials. These include increasing the sustainable use of biomass for the production of biomaterials, heat and power, and for transport. Two recent reports* concluded that, when responsibly developed, bioenergy can make an important contribution to energy and climate policy, and can also contribute to social and economic development objectives.

EXECUTIVE SUMMARY: Life cycle assessment (LCA) is a powerful tool that may be used to quantify the environmental impacts of products and services. It includes all processes, from cradle-to-grave, along the supply chain of the product. When analysing energy systems, greenhouse gas (GHG) emissions (primarily CO2, CH4 and N2O) are the impact of primary concern. In using LCA to determine the climate change mitigation benefits of bioenergy, the life cycle emissions of the bioenergy system are compared with the emissions for a reference energy system.

Despite a rapid worldwide expansion of the biofuel industry, there is a lack of consensus within the scientific community about the potential of biofuels to reduce reliance on petroleum and decrease greenhouse gas (GHG) emissions. Although life cycle assessment provides a means to quantify these potential benefits and environmental impacts, existing methods limit direct comparison within and between different biofuel systems because of inconsistencies in performance metrics, system boundaries, and underlying parameter values.

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information.

Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil.

Author(s):
Barry D. Solomon

Governments worldwide are promoting the development of biofuels in order to mitigate the climate impact of using fuels. In this article, I discuss the impacts of biofuels on climate change, water use, and land use. I discuss the overall metric by which these impacts have been measured and then present and discuss estimates of the impacts. In spite of the complexities of the environmental and technological systems that affect climate change, land use, and water use, and the difficulties of constructing useful metrics, it is possible to make some qualitative overall assessments.

Author(s):
Mark A. Delucchi

Production of ethanol from agriculutural and forestry residues, municipal solid waste, energy crops, and other forms of lignocellulosic biomass could improve energy security, reduce trade deficits, decrease urban air pollution, and contribute little, if any, net carbon dioxide accumulation to the atmosphere. Dilute acid can open up the biomass structure for subsequent processing. The simultaneous saccharification and fermentation (SSF) process is favored for producing ethanol from the major fraction of lignocellulosic biomass, cellulose, because of its low cost potential.

Author(s):
Charles E. Wyman

In this article the environmental and socio-economical impacts of the production of ethanol from sugarcane in the state of São Paulo (Brazil) are evaluated. Subsequently, an attempt is made to determine to what extent these impacts are a bottleneck for a sustainable and certified ethanol production. Seventeen environmental and socio-economic areas of concern are analysed.

Author(s):
Edward Smeets