This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.
KDF Search Results
The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different—and potentially conflicting—values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers.
In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance.
a b s t r a c t
The economic availability of biomass resources is a critical component in evaluating the commercial
viability of biofuels. To evaluate projected farmgate prices and grower payments needed to procure 295
million dry Mg (325 million dry tons) of biomass in the U.S. by 2022, this research employs POLYSYS, an
economic model of the U.S. agriculture sector. A price-run simulation suggests that a farmgate price of
$58.42 Mg1 ($53.00 dry ton1) is needed to procure this supply, while a demand-run simulation
Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. The context of a sustainability assessment includes the purpose, the particular biofuel production and distribution system, policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios.
The production of biobased feedstocks (i.e., plant– or algal-based material use for transportation fuels, heat, power and bioproducts) for energy consumption has been expanding rapidly in recent years. Biomass now accounts for 4.1% of total U.S. primary energy production. Unfortunately, there are considerable knowledge gaps relative to implications of this industry expansion for wildlife.
Biofuels are promoted in the United States through aggressive legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007).
Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators
will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify
19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air
quality, and productivity, building on existing knowledge and on national and international programs
that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized
Landscape ecology focuses on the spatial patterns and processes of ecological and human interactions. These patterns and processes are being altered by both changing resource-management practices of humans and changing climate conditions associated, in part, with increases in atmospheric concentrations of greenhouse gases. Dominant resource-extraction and land-management activities involve energy, and the use of fossil energy is one of the key drivers behind increasing greenhouse gas emissions as well as land-use changes.
Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives.
Land-use change (LUC) estimated by economic models has sparked intense international debate. Models estimate how much LUC might be induced under prescribed scenarios and rely on assumptions to generate LUC values. It is critical to test and validate underlying
Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and
long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of
the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water
Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a
Country borders have been chosen as system boundaries to inventory GHG emissions under the Kyoto Protocol. The use of country boundaries is clear and allows summing over all countries. The country inventories purposefully account for where and when both fossil-fuel combustion emissions occur, and changes in the biological stocks of carbon occur. The approach can be widely adopted, but this accounting is hampered by uncertain data (1, 2) and two basic shortcomings: Not all countries are required to report, and not all biological carbon stocks are inventoried.
The U.S. Department of Energy Biomass Program sponsored the Land-Use Change and Bioenergy workshop in Vonore, Tennessee, from May 11 to May 14, 2009. More than 50 experts from around the world gathered to review the state of the science, identify opportunities for collaboration, and prioritize next steps for the research and data needed to address key issues regarding the land-use effects of bioenergy policies. A key outcome of the workshop was the identification of research areas that may improve our understanding of land-use change in a bioenergy context.
Progress Toward Evaluating the Sustainabilty of Switchgrass as a Bioenergy Crop using the SWAT Model
ABSTRACT. Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a regional scale.
The establishment of bioenergy crops will affect ecological processes and their interactions and thus has an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social, and economic aspects of sustainability.
The U.S. Department of Energy Biomass Program sponsored the Land-Use Change and Bioenergy workshop in Vonore, Tennessee, from May 11 to May 14, 2009. More than 50 experts from around the world gathered to review the state of the science, identify opportunities for collaboration, and prioritize next steps for the research and data needed to address key issues regarding the land-use effects of bioenergy policies. A key outcome of the workshop was the
identification of research areas that may improve our understanding of land-use change in a bioenergy context.
Using System Dynamics to Model the Transition to Biofuels in the United States Preprint, B. Bush, M. Duffy, and D. Sandor, National Renewable Energy Laboratory S. Peterson, Peterson Group To be presented at the Third International Conference on Systems of Systems Engineering Monterey, California June 2-4, 2008 Conference Paper NREL/CP-150-43153 June 2008
Biomass Scenario Model Zotero References
National Renewable Energy Laboratory