Skip to main content

KDF Search Results

Displaying 1 - 20 of 28

This dataset contains data on agricultural crop and residue production by county in 2041. The agricultural crops in this dataset include barley, corn, cotton, grain sorghum, hay, oats, rice, soybeans, and wheat. The agricultural residues include barley straw, corn stover, oats straw, sorghum stubble, and wheat straw. The dataset was obtained from the database of the BT23 (Davis et al.,2024) for the near-term scenario with biomass market prices of up to $70 per dry ton.

For access to this dataset, please use the contact form and indicate this dataset by name.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie R. Davis , Chad Hellwinckel

This dataset contains data on forest production. The forestry products in this dataset includes hardwood, softwood, and mixed, and the dataset was obtained from the database of the 2023 Billion-Ton Report (Davis et al., 2024). The intended use is for the Feedstock Production Emissions to Air Model (FPEAM).

If you would also like access to this dataset, please use the "contact" button for a request to our research staff.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie Davis , Hope Cook

This dataset contains data on agricultural crop and residue production by county from 2022 to 2041. The agricultural crop in this dataset includes barley, biomass sorghum, corn, cotton, energy cane, eucalyptus, grain sorghum, hay, miscanthus, oats, pine, poplar, rice, soybean, switchgrass, wheat, and willow, and the agricultural residue includes barley straw, corn stover, oats straw, sorghum stubble, and wheat straw. The dataset was obtained from the database of the BT23 (Davis et al., 2024) for the mature-market medium scenario with biomass market prices of up to $70 per dry ton.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie R. Davis , Chad Hellwinckel

This dataset contains harvesting, chipping, and production cost data for forestland production by region and forest harvest system. The dataset supports Biomass from the forested land base analysis in the BT23 (Davis et al., 2024) and subsequent modeling using the Forest Sustainable and Economic Analysis Model (ForSEAM). The cost data was updated by Burton English and is in 2014 dollars and 2021 dollars.

Author(s):
Burton English , Jin Wook Ro , Lixia Lambert , Maggie Davis , Matthew H Langholtz

Hellwinckel, C., D. de la Torre Ugarte, J. L. Field, and M. Langholtz. 2024. “Appendix C. Appendix to Chapter 5: Biomass from Agriculture.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316182.

Organization:
DOE
Author(s):
Chad Hellwinckel , Daniel DeLaTorre Ugarte , John L Field , Matthew H Langholtz

Davis, M., L. Lambert, R. Jacobson, D. Rossi, C. Brandeis, J. Fried, B. English, et al. 2024. “Appendix B. Appendix to Chapter 4: Biomass from the Forested Land Base.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316181.

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , David Rossi , Consuelo Brandeis , Burton English , Jeremy Fried

U.S. Department of Energy. 2024. “Chapter 8: Looking Forward and Next Steps.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316179.

Organization:
DOE
Author(s):
Matthew H Langholtz

Chapter 7.2 — Coleman, A., K. Davis, J. DeAngelo, T. Saltiel, B. Saenz, L. Miller, K. Champion, E. Harrison, and A. Otwell. 2024. “Chapter 7.2: Macroalgae.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316176.

Organization:
DOE
Author(s):
Andre Coleman , Kristen Davis , Julianne DeAngelo , Troy Saltiel , Benjamin Saenz , Lee Miller , Kathleen Champion , Eliza Harrison , Anne Otwell

Davis, M., L. Lambert, R. Jacobson, D. Rossi, C. Brandeis, J. Fried, B. English, et al. 2024. “Chapter 4: Biomass from the Forested Land Base.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316170.

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , David Rossi , Consuelo Brandeis , Jeremy Fried , Burton English , Robert Abt , Karen Abt , Prakash Nepal , Claire O’Dea , Jeffrey Prestemon , Matthew Langholtz

Jacobson, R., and S. Curran. 2024. “Chapter 2: Biomass Currently Used for Energy and Coproducts.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316167.

Organization:
DOE
Author(s):
Ryan Jacobson

Langholtz, M. H. 2024. “Chapter 1: Background and Introduction.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316166.

Organization:
DOE
Author(s):
Matthew H Langholtz

Videos

Organization:
DOE
Author(s):
Matthew H Langholtz , Maggie Davis , Chad Hellwinckel , Daniel DeLaTorre Ugarte , Rebecca Efroymson , Ryan Jacobson , Anelia Milbrandt , Andre Coleman , Ryan Davis , Keith L. Kline , et al.

This is a joint report between three national labs, ORNL, INL, and ANL, that describes outcomes from a workshop. The Bioenergy Solutions to Gulf Hypoxia Workshop gathered stakeholders from industry, academia, national laboratories, and U.S. federal agencies to discuss how biomass feedstocks could help decrease nutrient loadings to the Gulf of Mexico (Gulf), a root cause of the large hypoxic zone that forms each summer.

Author(s):
Henriette Jager , Christina Negri , Leslie Ovard , Shyam Nair
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

One approach to assessing progress towards sustainability makes use of multiple indicators spanning the
environmental, social, and economic dimensions of the system being studied. Diverse indicators have different
units of measurement, and normalization is the procedure employed to transform differing indicator
measures onto similar scales or to unit-free measures. Given the inherent complexity entailed in interpreting
information related to multiple indicators, normalization and aggregation of sustainability indicators

Author(s):
N.L. Pollesch , V.H. Dale
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

There is an inextricable link between energy production and food/feed/fiber cultivation with available water resources. Currently in the United States, agriculture represents the largest sector of consumptivewater usemaking up 80.7%of the total. Electricity generation in the U.S. is projected to increase by 24 % in the next two decades and globally, the production of liquid transportation fuels are forecasted to triple over the next 25-years, having significant impacts on the import/export market and global economies.

Author(s):
Brandon C. Moore
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Excess nutrients from agriculture in the Mississippi River drainage, USA have degraded water quality in
freshwaters and contributed to anoxic conditions in downstream estuaries. Consequently, water quality is a
significant concern associated with conversion of lands to bioenergy production. This study focused on the
Arkansas-White-Red river basin (AWR), one of five major river basins draining to the Mississippi River. The
AWR has a strong precipitation gradient from east to west, and advanced cellulosic feedstocks are projected to

Author(s):
Henriette I. Jager , Latha M. Baskaran   , Peter E. Schweizer   , Anthony F. Turhollow   , Craig C. Brandt  , Raghavan Srinivasan
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

In order to aid operations that promote sustainability goals, researchers and stakeholders use sustainability assessments.  Although assessments take various forms, many utilize diverse sets of indicators numbering anywhere from two to over 2000. Indices, composite indicators, or aggregate values are used to simplify high dimensional and complex data sets and to clarify assessment results. Although the choice of aggregation function is a key component in the development of the assessment, there are fewliterature examples to guide appropriate

Author(s):
Nathan Pollesch
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Water sustainability is an integral part of the environmental sustainability. Water use, water quality, and the demand on water resource for bioenergy production can have potential impacts to food, feed, and fiber production and to our social well-being. With the support from United State Department of Energy, Argonne National Laboratory is developing a life cycle water use assessment tool for biofuels production at the national scale with multiple spatial resolutions.

Author(s):
May Wu

A Workshop for Oak Ridge National Laboratory (ORNL), the US Environmental Protection Agency (EPA), and their collaborators was held on September 10-11, 2009 at ORNL. The informal workshop focused on “Sustainability of Bioenergy Systems: Cradle to Grave.” The topics covered included sustainability issues associated with feedstock production and transport, production of biofuels and by-products, and delivery and consumption by the end users.

Author(s):
Vriginia Dale