Skip to main content

KDF Search Results

Displaying 1 - 20 of 44

This dataset contains data on agricultural crop and residue production by county in 2041. The agricultural crops in this dataset include barley, corn, cotton, grain sorghum, hay, oats, rice, soybeans, and wheat. The agricultural residues include barley straw, corn stover, oats straw, sorghum stubble, and wheat straw. The dataset was obtained from the database of the BT23 (Davis et al.,2024) for the near-term scenario with biomass market prices of up to $70 per dry ton.

For access to this dataset, please use the contact form and indicate this dataset by name.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie R. Davis , Chad Hellwinckel

This dataset contains data on forest production. The forestry products in this dataset includes hardwood, softwood, and mixed, and the dataset was obtained from the database of the 2023 Billion-Ton Report (Davis et al., 2024). The intended use is for the Feedstock Production Emissions to Air Model (FPEAM).

If you would also like access to this dataset, please use the "contact" button for a request to our research staff.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie Davis , Hope Cook

This dataset contains data on agricultural crop and residue production by county from 2022 to 2041. The agricultural crop in this dataset includes barley, biomass sorghum, corn, cotton, energy cane, eucalyptus, grain sorghum, hay, miscanthus, oats, pine, poplar, rice, soybean, switchgrass, wheat, and willow, and the agricultural residue includes barley straw, corn stover, oats straw, sorghum stubble, and wheat straw. The dataset was obtained from the database of the BT23 (Davis et al., 2024) for the mature-market medium scenario with biomass market prices of up to $70 per dry ton.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie R. Davis , Chad Hellwinckel

This dataset contains harvesting, chipping, and production cost data for forestland production by region and forest harvest system. The dataset supports Biomass from the forested land base analysis in the BT23 (Davis et al., 2024) and subsequent modeling using the Forest Sustainable and Economic Analysis Model (ForSEAM). The cost data was updated by Burton English and is in 2014 dollars and 2021 dollars.

Author(s):
Burton English , Jin Wook Ro , Lixia Lambert , Maggie Davis , Matthew H Langholtz

Hellwinckel, C., D. de la Torre Ugarte, J. L. Field, and M. Langholtz. 2024. “Appendix C. Appendix to Chapter 5: Biomass from Agriculture.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316182.

Organization:
DOE
Author(s):
Chad Hellwinckel , Daniel DeLaTorre Ugarte , John L Field , Matthew H Langholtz

Davis, M., L. Lambert, R. Jacobson, D. Rossi, C. Brandeis, J. Fried, B. English, et al. 2024. “Appendix B. Appendix to Chapter 4: Biomass from the Forested Land Base.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316181.

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , David Rossi , Consuelo Brandeis , Burton English , Jeremy Fried

U.S. Department of Energy. 2024. “Chapter 8: Looking Forward and Next Steps.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316179.

Organization:
DOE
Author(s):
Matthew H Langholtz

Chapter 7.2 — Coleman, A., K. Davis, J. DeAngelo, T. Saltiel, B. Saenz, L. Miller, K. Champion, E. Harrison, and A. Otwell. 2024. “Chapter 7.2: Macroalgae.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316176.

Organization:
DOE
Author(s):
Andre Coleman , Kristen Davis , Julianne DeAngelo , Troy Saltiel , Benjamin Saenz , Lee Miller , Kathleen Champion , Eliza Harrison , Anne Otwell

Davis, M., L. Lambert, R. Jacobson, D. Rossi, C. Brandeis, J. Fried, B. English, et al. 2024. “Chapter 4: Biomass from the Forested Land Base.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316170.

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , David Rossi , Consuelo Brandeis , Jeremy Fried , Burton English , Robert Abt , Karen Abt , Prakash Nepal , Claire O’Dea , Jeffrey Prestemon , Matthew Langholtz

Jacobson, R., and S. Curran. 2024. “Chapter 2: Biomass Currently Used for Energy and Coproducts.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316167.

Organization:
DOE
Author(s):
Ryan Jacobson

Langholtz, M. H. 2024. “Chapter 1: Background and Introduction.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316166.

Organization:
DOE
Author(s):
Matthew H Langholtz

Videos

Organization:
DOE
Author(s):
Matthew H Langholtz , Maggie Davis , Chad Hellwinckel , Daniel DeLaTorre Ugarte , Rebecca Efroymson , Ryan Jacobson , Anelia Milbrandt , Andre Coleman , Ryan Davis , Keith L. Kline , et al.

Reducing dependence on fossil‐based energy has raised interest in biofuels as a potential energy source, but concerns have been raised about potential implications for water quality. These effects may vary regionally depending on the biomass feedstocks and changes in land management. Here, we focused on the Tennessee River Basin (TRB), USA.

Organization:
DOE
Author(s):
Wang, Gangsheng , Jager, Henriette
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Price Scenarios at $54 and $119 were simulated for Switchgrass, Miscanthus and Willow production from 2017 to 2040. These analyses were used in Woodbury, Peter B., et al. 2018. "Improving water quality in the Chesapeake Bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production." Biomass and Bioenergy 114:132-142. doi: https://doi.org/10.1016/j.biombioe.2017.01.024.

Organization:
USDA
Author(s):
Maggie R. Davis

Net benefits of bioenergy crops, including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. Life cycle assessments (LCA) for bioenergy crops have been conducted using models in which SOC information is usually from the top 30 to 40 cm. Information on the effects of crop management practices on SOC has been limited so LCA models have largely not included any management practice effects.

Author(s):
Ronald F. Follett , Kenneth P. Vogel , Gary E. Varvel , Robert B. Mitchell , John Kimble

Abstract: Unfavorable weather can significantly impact the production and provision of agriculture-based biomass feedstocks such as Miscanthus and switchgrass. This work quantified the impact of regional weather on the feedstock production systems using the BioFeed modeling framework. Weather effects were incorporated in BioFeed by including the probability of working day (pwd) parameter in the model, which defined the fraction of days in a specific period such as two weeks that were suitable for field operations.

Author(s):
Shastri, Yogendra

The increasing demand for bioenergy crops presents our society with the opportunity to design more sustainable landscapes. We have created a Biomass Location for Optimal Sustainability Model (BLOSM) to test the hypothesis that landscape design of cellulosic bioenergy crop plantings may simultaneously improve water quality (i.e. decrease concentrations of sediment, total phosphorus, and total nitrogen) and increase profits for farmer-producers while achieving a feedstock-production goal.

Author(s):
Parish, ES

Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and
long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of
the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water
Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a