This project contributes to understanding and enhancing socioeconomic and environmental benefits of biofuels through modeling the effect of prices and policy incentives on fuel markets for “hard-to-decarbonize” transportation sectors. The main analytical tool used in this project is the BioTrans model, originally developed to assess and quantify the economic and energy security benefits of biofuels for light-duty vehicles and bioproducts.
KDF Search Results
Biofuels are promoted in the United States through aggressive legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007).
This review on research on life cycle carbon accounting examines the complexities in accounting for carbon emissions given the many different ways that wood is used. Recent objectives to increase the use of renewable fuels have raised policy questions, with respect to the sustainability of managing our forests as well as the impacts of how best to use wood from our forests. There has been general support for the benefits of sustainably managing forests for carbon mitigation as expressed by the Intergovernmental Panel on Climate Change in 2007.
Land-use change (LUC) estimated by economic models has sparked intense international debate. Models estimate how much LUC might be induced under prescribed scenarios and rely on assumptions to generate LUC values. It is critical to test and validate underlying
A primary objective of current U.S. biofuel law – the “Energy Independence and Security Act of 2007” (EISA) – is to reduce dependence on imported oil, but the law also requires biofuels to meet carbon emission reduction thresholds relative to petroleum fuels. EISA created a renewable fuel standard with annual targets for U.S. biofuel use that climb gradually from 9 billion gallons per year in 2008 to 36 billion gallons (or about 136 billion liters) of biofuels per year by 2022. The most controversial aspects of U.S.
ABSTRACT: A growing number of countries are implementing greenhouse gas (GHG) emissions trading schemes. As these schemes impose a cost for GHG emissions they should increase the competitiveness of low carbon fuels. Bioenergy from biomass is regarded as carbon neutral in most of the schemes, therefore incurring no emission costs. Emissions trading schemes may therefore encourage increased use of biomass for energy, and under certain conditions may also incentivize the construction of new bioenergy plants.
Algae feedstocks for alternative fuels production are not economically competitive with fossil fuels at the present time. Furthermore, it has not yet been demonstrated that algae production systems offer improved sustainability characteristics.
This publication provides the summary and conclusions from the workshop ‘Developing Sustainable Trade in Bioenergy’ held in conjunction with the meeting of the Executive Committee of IEA Bioenergy in Nara City, Japan on 12 May 2010.
The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL.
A new addition to the growing biofuels resources list at AgMRC is a cellulosic ethanol feasibility template developed by agricultural economists at Oklahoma State University (OSU). The purpose of the spreadsheet-based template is to give users the opportunity to assess the economics of a commercial-scale plant using enzymatic hydrolysis methods to process cellulosic materials into ethanol. The OSU Cellulosic Ethanol Feasibility Template can be downloaded and modified by the user to mimic the basic operating parameters of a proposed ethanol plant under a variety of production conditions.
This paper examines the possibilities of breaking into the cellulosic ethanol market in south Louisiana via strategic feedstock choices and the leveraging of the area’s competitive advantages. A small plant strategy is devised whereby the first-mover problem might be solved, and several scenarios are tested using Net Present Value analysis.
This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.
This article addresses development of the Illinois ethanol industry through the period 2007-2022, responding to the ethanol production mandates of the Renewable Fuel Standard by the U.S. Environmental Protection Agency. The planning for corn-based and cellulosic ethanol production requires integrated decisions on transportation, plant location, and capacity.
When the lignocellulosic biofuels industry reaches maturity and many types of biomass sources become economically viable, management of multiple feedstock supplies – that vary in their yields, density (tons per unit area), harvest window, storage and seasonal costs, storage losses, transport distance to the production plant – will become increasingly important for the success of individual enterprises. The manager’s feedstock procurement problem is modeled as a multi-period sequence problem to account for dynamic management over time.
Understanding the Growth of the Cellulosic Ethanol Industry, D. Sandor and R. Wallace, National Renewable Energy Laboratory, S. Peterson The Peterson Group, Technical Report, NREL/TP-150-42120 April 2008
Ethanol production doubled in a very short period of time in the U.S. due to a combination of natural disasters, political tensions, and much more demand globally from petroleum. Responses to this expansion will span many sectors of society and the economy. As the Midwest gears up to rapidly add new ethanol manufacturing plants, the existing regional economy must accommodate the changes.