Skip to main content

KDF Search Results

Displaying 1 - 20 of 40

This dataset contains data on agricultural crop and residue production by county in 2041. The agricultural crops in this dataset include barley, corn, cotton, grain sorghum, hay, oats, rice, soybeans, and wheat. The agricultural residues include barley straw, corn stover, oats straw, sorghum stubble, and wheat straw. The dataset was obtained from the database of the BT23 (Davis et al.,2024) for the near-term scenario with biomass market prices of up to $70 per dry ton.

For access to this dataset, please use the contact form and indicate this dataset by name.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie R. Davis , Chad Hellwinckel

This dataset contains data on forest production. The forestry products in this dataset includes hardwood, softwood, and mixed, and the dataset was obtained from the database of the 2023 Billion-Ton Report (Davis et al., 2024). The intended use is for the Feedstock Production Emissions to Air Model (FPEAM).

If you would also like access to this dataset, please use the "contact" button for a request to our research staff.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie Davis , Hope Cook

This dataset contains data on agricultural crop and residue production by county from 2022 to 2041. The agricultural crop in this dataset includes barley, biomass sorghum, corn, cotton, energy cane, eucalyptus, grain sorghum, hay, miscanthus, oats, pine, poplar, rice, soybean, switchgrass, wheat, and willow, and the agricultural residue includes barley straw, corn stover, oats straw, sorghum stubble, and wheat straw. The dataset was obtained from the database of the BT23 (Davis et al., 2024) for the mature-market medium scenario with biomass market prices of up to $70 per dry ton.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie R. Davis , Chad Hellwinckel

This dataset contains harvesting, chipping, and production cost data for forestland production by region and forest harvest system. The dataset supports Biomass from the forested land base analysis in the BT23 (Davis et al., 2024) and subsequent modeling using the Forest Sustainable and Economic Analysis Model (ForSEAM). The cost data was updated by Burton English and is in 2014 dollars and 2021 dollars.

Author(s):
Burton English , Jin Wook Ro , Lixia Lambert , Maggie Davis , Matthew H Langholtz

Hellwinckel, C., D. de la Torre Ugarte, J. L. Field, and M. Langholtz. 2024. “Appendix C. Appendix to Chapter 5: Biomass from Agriculture.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316182.

Organization:
DOE
Author(s):
Chad Hellwinckel , Daniel DeLaTorre Ugarte , John L Field , Matthew H Langholtz

Davis, M., L. Lambert, R. Jacobson, D. Rossi, C. Brandeis, J. Fried, B. English, et al. 2024. “Appendix B. Appendix to Chapter 4: Biomass from the Forested Land Base.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316181.

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , David Rossi , Consuelo Brandeis , Burton English , Jeremy Fried

U.S. Department of Energy. 2024. “Chapter 8: Looking Forward and Next Steps.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316179.

Organization:
DOE
Author(s):
Matthew H Langholtz

Chapter 7.2 — Coleman, A., K. Davis, J. DeAngelo, T. Saltiel, B. Saenz, L. Miller, K. Champion, E. Harrison, and A. Otwell. 2024. “Chapter 7.2: Macroalgae.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316176.

Organization:
DOE
Author(s):
Andre Coleman , Kristen Davis , Julianne DeAngelo , Troy Saltiel , Benjamin Saenz , Lee Miller , Kathleen Champion , Eliza Harrison , Anne Otwell

Davis, M., L. Lambert, R. Jacobson, D. Rossi, C. Brandeis, J. Fried, B. English, et al. 2024. “Chapter 4: Biomass from the Forested Land Base.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316170.

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , David Rossi , Consuelo Brandeis , Jeremy Fried , Burton English , Robert Abt , Karen Abt , Prakash Nepal , Claire O’Dea , Jeffrey Prestemon , Matthew Langholtz

Jacobson, R., and S. Curran. 2024. “Chapter 2: Biomass Currently Used for Energy and Coproducts.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316167.

Organization:
DOE
Author(s):
Ryan Jacobson

Langholtz, M. H. 2024. “Chapter 1: Background and Introduction.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316166.

Organization:
DOE
Author(s):
Matthew H Langholtz

Videos

Organization:
DOE
Author(s):
Matthew H Langholtz , Maggie Davis , Chad Hellwinckel , Daniel DeLaTorre Ugarte , Rebecca Efroymson , Ryan Jacobson , Anelia Milbrandt , Andre Coleman , Ryan Davis , Keith L. Kline , et al.

This is an article from Science Magazine from October 2008. Science-based policy is essential for guiding an environmentally sustainable approach to cellulosic biofuels. The May 2008 passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences.

Author(s):
Robertson G. Philip

A working paper review of current approaches to accounting for indirect land-use changes in green house gas balances of biofuels. This report reviews the current effort made worldwide to address this issue. A
description of land-use concepts is first provided (Section 2) followed by a classification of
ILUC sources (Section 3). Then, a discussion on the implications of including ILUC
emissions in the GHG balance of biofuel pathways (Section 4) and a review of methodologies
being developed to quantify indirect land-use change (Section 5) are presented. Section 6

Author(s):
Gnansounou,Edgard

Biofuels from land-rich tropical countries may help displace foreign petroleum imports for many industrialized nations, providing a possible solution to the twin challenges of energy security and climate change. But concern is mounting that crop-based biofuels will increase net greenhouse gas emissions if feedstocks are produced by expanding agricultural lands. Here we quantify the ?carbon payback time? for a range of biofuel crop expansion pathways in the tropics.

Author(s):
Gibbs, H.K.

Land-use changes are frequently indicated to be one of the main human-induced factors influencing the groundwater system. For land-use change, groundwater research has mainly focused on the change in water quality thereby neglecting changes in quantity. The objective of this paper is to assess the impact of land-use changes, from 2000 until 2020, on the hydrological balance and in particular on groundwater quantity, as results from a case study in the Kleine Nete basin, Belgium.

Author(s):
Dams, J.

In this paper we investigate the potential production and implications of a global biofuels industry. We develop alternative approaches to the introduction of land as an economic factor input, in value and physical terms, into a computable general equilibrium framework. Both approach allows us to parameterize biomass production in a manner consistent with agro-engineering information on yields and a ?second generation? cellulosic biomass conversion technology.

Author(s):
Gurgel, Angelo

The harvest of corn stover or herbaceous crops as feedstocks for bioenergy purposes has been shown to have significant benefits from energy and climate change perspectives. There is a potential, however, to adversely impact water and soil quality, especially in Midwestern states where the biomass feedstock production would predominantly occur.

Author(s):
Nelson, Richard

National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.

Author(s):
Schnoor, Jerald