Skip to main content

KDF Search Results

Displaying 1 - 20 of 35

This dataset contains data on agricultural crop and residue production by county in 2041. The agricultural crops in this dataset include barley, corn, cotton, grain sorghum, hay, oats, rice, soybeans, and wheat. The agricultural residues include barley straw, corn stover, oats straw, sorghum stubble, and wheat straw. The dataset was obtained from the database of the BT23 (Davis et al.,2024) for the near-term scenario with biomass market prices of up to $70 per dry ton.

For access to this dataset, please use the contact form and indicate this dataset by name.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie R. Davis , Chad Hellwinckel

This dataset contains data on forest production. The forestry products in this dataset includes hardwood, softwood, and mixed, and the dataset was obtained from the database of the 2023 Billion-Ton Report (Davis et al., 2024). The intended use is for the Feedstock Production Emissions to Air Model (FPEAM).

If you would also like access to this dataset, please use the "contact" button for a request to our research staff.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie Davis , Hope Cook

This dataset contains data on agricultural crop and residue production by county from 2022 to 2041. The agricultural crop in this dataset includes barley, biomass sorghum, corn, cotton, energy cane, eucalyptus, grain sorghum, hay, miscanthus, oats, pine, poplar, rice, soybean, switchgrass, wheat, and willow, and the agricultural residue includes barley straw, corn stover, oats straw, sorghum stubble, and wheat straw. The dataset was obtained from the database of the BT23 (Davis et al., 2024) for the mature-market medium scenario with biomass market prices of up to $70 per dry ton.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie R. Davis , Chad Hellwinckel

This dataset contains harvesting, chipping, and production cost data for forestland production by region and forest harvest system. The dataset supports Biomass from the forested land base analysis in the BT23 (Davis et al., 2024) and subsequent modeling using the Forest Sustainable and Economic Analysis Model (ForSEAM). The cost data was updated by Burton English and is in 2014 dollars and 2021 dollars.

Author(s):
Burton English , Jin Wook Ro , Lixia Lambert , Maggie Davis , Matthew H Langholtz

Hellwinckel, C., D. de la Torre Ugarte, J. L. Field, and M. Langholtz. 2024. “Appendix C. Appendix to Chapter 5: Biomass from Agriculture.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316182.

Organization:
DOE
Author(s):
Chad Hellwinckel , Daniel DeLaTorre Ugarte , John L Field , Matthew H Langholtz

Davis, M., L. Lambert, R. Jacobson, D. Rossi, C. Brandeis, J. Fried, B. English, et al. 2024. “Appendix B. Appendix to Chapter 4: Biomass from the Forested Land Base.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316181.

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , David Rossi , Consuelo Brandeis , Burton English , Jeremy Fried

U.S. Department of Energy. 2024. “Chapter 8: Looking Forward and Next Steps.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316179.

Organization:
DOE
Author(s):
Matthew H Langholtz

Chapter 7.2 — Coleman, A., K. Davis, J. DeAngelo, T. Saltiel, B. Saenz, L. Miller, K. Champion, E. Harrison, and A. Otwell. 2024. “Chapter 7.2: Macroalgae.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316176.

Organization:
DOE
Author(s):
Andre Coleman , Kristen Davis , Julianne DeAngelo , Troy Saltiel , Benjamin Saenz , Lee Miller , Kathleen Champion , Eliza Harrison , Anne Otwell

Davis, M., L. Lambert, R. Jacobson, D. Rossi, C. Brandeis, J. Fried, B. English, et al. 2024. “Chapter 4: Biomass from the Forested Land Base.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316170.

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , David Rossi , Consuelo Brandeis , Jeremy Fried , Burton English , Robert Abt , Karen Abt , Prakash Nepal , Claire O’Dea , Jeffrey Prestemon , Matthew Langholtz

Jacobson, R., and S. Curran. 2024. “Chapter 2: Biomass Currently Used for Energy and Coproducts.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316167.

Organization:
DOE
Author(s):
Ryan Jacobson

Langholtz, M. H. 2024. “Chapter 1: Background and Introduction.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316166.

Organization:
DOE
Author(s):
Matthew H Langholtz

Videos

Organization:
DOE
Author(s):
Matthew H Langholtz , Maggie Davis , Chad Hellwinckel , Daniel DeLaTorre Ugarte , Rebecca Efroymson , Ryan Jacobson , Anelia Milbrandt , Andre Coleman , Ryan Davis , Keith L. Kline , et al.

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author(s):
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Biofuels are promoted in the United States through aggressive legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007).

Author(s):
Emily Newes, Daniel Inman, Brian Bush

A primary objective of current U.S. biofuel law – the “Energy Independence and Security Act of 2007” (EISA) – is to reduce dependence on imported oil, but the law also requires biofuels to meet carbon emission reduction thresholds relative to petroleum fuels. EISA created a renewable fuel standard with annual targets for U.S. biofuel use that climb gradually from 9 billion gallons per year in 2008 to 36 billion gallons (or about 136 billion liters) of biofuels per year by 2022. The most controversial aspects of U.S.

Author(s):
Keith L. Kline , Gbadebo Oladosu

Human actions are altering the terrestrial environment at unprecedented rates, magnitudes, and spatial scales. Landcover change stemming from human land uses represents a major source and a major element of global environmental change. Not only are the global-level data on landuse and land-cover change relatively poor, but we need a much better understanding of the underlying driving forces for these changes. Many forces have been proposed as significant, but single-factor explanations of land transformation have proved to be inadequate.

Author(s):
Turner,B.L.

We present a system dynamics global LUC model intended to examine LUC attributed to biofuel production. The model has major global land system stocks and flows and can be exercised under different food and biofuel demand assumptions. This model provides insights into the drivers and dynamic interactions of LUC, population, dietary choices, and biofuel policy rather than a precise number generator.

The estimation of greenhouse gas (GHG) emissions from a change in land-use and management resulting from growing biofuel feedstocks has undergone extensive – and often contentious – scientific and policy debate. Emergent renewable fuel policies require life cycle GHG emission accounting that includes biofuel-induced global land-use change (LUC) GHG emissions. However, the science of LUC generally, and biofuels-induced LUC specifically, is nascent and underpinned with great uncertainty.