Skip to main content

KDF Search Results

Displaying 1 - 20 of 76

This dataset contains data on agricultural crop and residue production by county in 2041. The agricultural crops in this dataset include barley, corn, cotton, grain sorghum, hay, oats, rice, soybeans, and wheat. The agricultural residues include barley straw, corn stover, oats straw, sorghum stubble, and wheat straw. The dataset was obtained from the database of the BT23 (Davis et al.,2024) for the near-term scenario with biomass market prices of up to $70 per dry ton.

For access to this dataset, please use the contact form and indicate this dataset by name.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie R. Davis , Chad Hellwinckel

This project contributes to understanding and enhancing socioeconomic and environmental benefits of biofuels through modeling the effect of prices and policy incentives on fuel markets for “hard-to-decarbonize” transportation sectors. The main analytical tool used in this project is the BioTrans model, originally developed to assess and quantify the economic and energy security benefits of biofuels for light-duty vehicles and bioproducts.

Organization:
DOE
Author(s):
Rocio Uria Martinez , Jin Wook Ro

This dataset contains data on forest production. The forestry products in this dataset includes hardwood, softwood, and mixed, and the dataset was obtained from the database of the 2023 Billion-Ton Report (Davis et al., 2024). The intended use is for the Feedstock Production Emissions to Air Model (FPEAM).

If you would also like access to this dataset, please use the "contact" button for a request to our research staff.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie Davis , Hope Cook

This dataset contains data on agricultural crop and residue production by county from 2022 to 2041. The agricultural crop in this dataset includes barley, biomass sorghum, corn, cotton, energy cane, eucalyptus, grain sorghum, hay, miscanthus, oats, pine, poplar, rice, soybean, switchgrass, wheat, and willow, and the agricultural residue includes barley straw, corn stover, oats straw, sorghum stubble, and wheat straw. The dataset was obtained from the database of the BT23 (Davis et al., 2024) for the mature-market medium scenario with biomass market prices of up to $70 per dry ton.

Organization:
DOE
Author(s):
Jin Wook Ro , Maggie R. Davis , Chad Hellwinckel

This dataset contains harvesting, chipping, and production cost data for forestland production by region and forest harvest system. The dataset supports Biomass from the forested land base analysis in the BT23 (Davis et al., 2024) and subsequent modeling using the Forest Sustainable and Economic Analysis Model (ForSEAM). The cost data was updated by Burton English and is in 2014 dollars and 2021 dollars.

Author(s):
Burton English , Jin Wook Ro , Lixia Lambert , Maggie Davis , Matthew H Langholtz

Hellwinckel, C., D. de la Torre Ugarte, J. L. Field, and M. Langholtz. 2024. “Appendix C. Appendix to Chapter 5: Biomass from Agriculture.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316182.

Organization:
DOE
Author(s):
Chad Hellwinckel , Daniel DeLaTorre Ugarte , John L Field , Matthew H Langholtz

Davis, M., L. Lambert, R. Jacobson, D. Rossi, C. Brandeis, J. Fried, B. English, et al. 2024. “Appendix B. Appendix to Chapter 4: Biomass from the Forested Land Base.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316181.

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , David Rossi , Consuelo Brandeis , Burton English , Jeremy Fried

U.S. Department of Energy. 2024. “Chapter 8: Looking Forward and Next Steps.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316179.

Organization:
DOE
Author(s):
Matthew H Langholtz

Chapter 7.2 — Coleman, A., K. Davis, J. DeAngelo, T. Saltiel, B. Saenz, L. Miller, K. Champion, E. Harrison, and A. Otwell. 2024. “Chapter 7.2: Macroalgae.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316176.

Organization:
DOE
Author(s):
Andre Coleman , Kristen Davis , Julianne DeAngelo , Troy Saltiel , Benjamin Saenz , Lee Miller , Kathleen Champion , Eliza Harrison , Anne Otwell

Davis, M., L. Lambert, R. Jacobson, D. Rossi, C. Brandeis, J. Fried, B. English, et al. 2024. “Chapter 4: Biomass from the Forested Land Base.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316170.

Organization:
DOE
Author(s):
Maggie Davis , Lixia Lambert , Ryan Jacobson , David Rossi , Consuelo Brandeis , Jeremy Fried , Burton English , Robert Abt , Karen Abt , Prakash Nepal , Claire O’Dea , Jeffrey Prestemon , Matthew Langholtz

Jacobson, R., and S. Curran. 2024. “Chapter 2: Biomass Currently Used for Energy and Coproducts.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316167.

Organization:
DOE
Author(s):
Ryan Jacobson

Langholtz, M. H. 2024. “Chapter 1: Background and Introduction.” In 2023 Billion‐Ton Report. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316166.

Organization:
DOE
Author(s):
Matthew H Langholtz

Videos

Organization:
DOE
Author(s):
Matthew H Langholtz , Maggie Davis , Chad Hellwinckel , Daniel DeLaTorre Ugarte , Rebecca Efroymson , Ryan Jacobson , Anelia Milbrandt , Andre Coleman , Ryan Davis , Keith L. Kline , et al.

This workshop examines the potential benefits, feasibility, and barriers to the use of biofuels in place of heavy fuel oil (HFO) and marine gas oil for marine vessels. More than 90% of world’s shipped goods
travel by marine cargo vessels powered by internal combustion (diesel) engines using primarily low-cost residual HFO, which is high in sulfur content. Recognizing that marine shipping is the largest source of

Organization:
DOE
Author(s):
Mike Kass , Zia Abdullah , Mary Biddy , Corinne Drennan , Troy Hawkins , Susanne Jones , Johnathan Holladay , Dough Longman , Emily Newes , Tim Theiss , Tom Thompson , Michael Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

We propose a causal analysis framework to increase understanding of land-use change (LUC) and the reliability of LUC models. This health-sciences-inspired framework can be applied to determine probable causes of LUC in the context of bioenergy. Calculations of net greenhouse gas (GHG) emissions for LUC associated with biofuel production are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under regional (EU), national (US, UK), and state (California) regulations.

Author(s):
Efroymson RA , Kline KL , Angelsen A , Verburg PH , Dale VH , Langeveld JWA , McBride A
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The development of modern high efficiency bioenergy technologies has the
potential to improve energy security and access while reducing environmental impacts
and stimulating low-carbon development. While modern bioenergy production is
increasing in the world, it still makes a small contribution to our energy matrix.
At present, approximately 87% of energy demand is satisfied by energy produced
through consumption of fossil fuels. Although the International Energy Agency (IEA)

Author(s):
Joly, CA , Huntley, BJ , Verdade, LM , Dale, VH , Mace, G , Muok, B , Ravindranath, NH

Conventional feedstock supply systems exist and have been developed for traditional agriculture and forestry systems. These conventional feedstock supply systems can be effective in high biomass-yielding areas (such as for corn stover in Iowa and plantation-grown pine trees in the southern United States), but they have their limits, particularly with respect to addressing feedstock quality and reducing feedstock supply risk to biorefineries. They also are limited in their ability to efficiently deliver energy crops.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.