Skip to main content

KDF Search Results

Displaying 61 - 80 of 142

To determine the environmental implications of producing electricity from biomass and coal, life cycle assessments (LCA) have been conducted on systems based on three power generation options: (1) a biomass-fired integrated gasification combined cycle (IGCC) system, (2) three coal-fired power plant technologies, and (3) a system cofiring waste biomass with coal.

Author(s):
Spath, Pam

The U.S. Department of Energy has supported a research and development program for the establishment of renewable, biomass-derived, liquid fuels for the better part of the last twenty years. These 'biofuels' represent opportunities to respond to uncertainties about our energy security and the future health of our environment. Throughout its history, the Biofuels Program has experienced an ongoing fiscal 'roller coaster'. Funding has ebbed and flowed with changing political and public attitudes about energy.

Author(s):
Sheehan, J.

Biodiesel is a renewable diesel fuel substitute. It can be made from a variety of natural oils and fats. Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also know as B100) and in blends with petroleum diesel. European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil).

Author(s):
Sheehan, J.

Biodiesel is a renewable diesel fuel substitute that can be made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B100) and in blends with petroleum diesel. Most European biodiesel is made from rapeseed oil (a cousin of canola oil).

Author(s):
Sheehan, John

A life cycle assessment (LCA) on coal-fired power systems has been conducted to assess the environmental effects on a cradle-to-grave basis. Three different designs were studied: (1) a plant that represents the average emissions from coal-fired power plants in the U.S. today, (2) a plant that meets the New Source Performance Standards (NSPS), and (3) an advanced plant incorporating a low emission boiler system (LEBS).

Author(s):
Spath, Pam

Limited fuel availability is a critical factor in the marketability of new fuels. A survey of us households is used to estimate the value of fuel availability and its influence on choice of fuel for a fuel-flexible vehicle and the choice of a dedicated-fuel engine for a vehicle. The marginal value of availability decreases as the percent of stations offering a new fuel increases. For fuel-flexible vehicles the cost of lack of availability decreases from us $0.35/gallon at 1% to US $0.02/gallon when 50% of stations offer the fuel.

Author(s):
David L. Greene

Electric power production from biomass has the potential to make significant contributions to the power mix in the U.S., and to do so with substantially fewer environmental impacts than current technologies. Using dedicated energy crops for power production will significantly close the carbon cycle, reduce and stabilize feedstock costs, increase the feasible size of biomass power plants, and provide economic benefits to agricultural communities.

Author(s):
Mann, Maggie

Estimates of vehicle miles traveled (VMT) are used extensively in transportation planning for allocating resources, estimating vehicle emissions, computing energy consumption, and assessing traffic impact. The estimates used in these applications usually come from different sources. For an objective comparison of VMT estimates from different methods, the principles and assumptions supporting the methods and the potential sources of error associated with the methods must be clearly understood.

Author(s):
Robert K. Kumapley

Human actions are altering the terrestrial environment at unprecedented rates, magnitudes, and spatial scales. Landcover change stemming from human land uses represents a major source and a major element of global environmental change. Not only are the global-level data on landuse and land-cover change relatively poor, but we need a much better understanding of the underlying driving forces for these changes. Many forces have been proposed as significant, but single-factor explanations of land transformation have proved to be inadequate.

Author(s):
Turner,B.L.

The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector.

ABSTRACT: A growing number of countries are implementing greenhouse gas (GHG) emissions trading schemes. As these schemes impose a cost for GHG emissions they should increase the competitiveness of low carbon fuels. Bioenergy from biomass is regarded as carbon neutral in most of the schemes, therefore incurring no emission costs. Emissions trading schemes may therefore encourage increased use of biomass for energy, and under certain conditions may also incentivize the construction of new bioenergy plants.

Transportation fuels are the major component of our energy portfolio. Of the 20 million barrels of petroleum consumed each day in the United States, 68 percent is used in the transportation sector. The Western states are in position to become key producers and beneficiaries in the emerging alternative-fuels economy. We have abundant resources that have great potential as domestic sources for transportation fuels.

Ethanol use in vehicle fuel is increasing worldwide, but the potential cancer risk and
ozone-related health consequences of a large-scale conversion from gasoline to ethanol
have not been examined. Here, a nested global-through-urban air pollution/weather
forecast model is combined with high-resolution future emission inventories, population
data, and health effects data to examine the effect of converting from gasoline to E85 on
cancer, mortality, and hospitalization in the U.S. as a whole and Los Angeles in

To study the potential effects of increased biofuel use, we evaluated six representative analyses
of fuel ethanol. Studies that reported negative net energy incorrectly ignored coproducts and used
some obsolete data. All studies indicated that current corn ethanol technologies are much less
petroleum-intensive than gasoline but have greenhouse gas emissions similar to those of gasoline.
However, many important environmental effects of biofuel production are poorly understood.

Despite a rapid worldwide expansion of the biofuel industry, there is a lack of consensus within the scientific community about the potential of biofuels to reduce reliance on petroleum and decrease greenhouse gas (GHG) emissions. Although life cycle assessment provides a means to quantify these potential benefits and environmental impacts, existing methods limit direct comparison within and between different biofuel systems because of inconsistencies in performance metrics, system boundaries, and underlying parameter values.

Traffic flows in the U.S. have been affected by the substantial increase and, as of January 2009, decrease in biofuel production and use. This paper considers a framework to study the effect on grain transportation flows of the 2005 Energy Act and subsequent legislation, which mandated higher production levels of biofuels, e.g. ethanol and biodiesels. Future research will incorporate changes due to the recent economic slowdown.

Author(s):
Ahmedov, Zarabek