Skip to main content

KDF Search Results

Displaying 21 - 40 of 257

The ongoing debate about costs and benefits of wood‐pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants.

Organization:
DOE
Author(s):
Virginia H. Dale , Keith L. Kline , Esther S. Parish , Annette L. Cowie , Robert Emory , Robert W. Malmsheimer , Raphael Slade , Charles Tattersall (Tat) SMITH Jr
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Wood pellet exports from the Southeastern United States (SE US) to Europe have been increasing in response to European Union member state policies to displace coal with renewable biomass for electricity generation. An understanding of the interactions among SE US forest markets, forest management, and forest ecosystem services is required to quantify the effects of pellet production compared to what would be expected under a reference case or ‘counterfactual scenario’ without pellet production.

Organization:
DOE
Author(s):
Esther S. Parish , Virginia H. Dale , Keith L. Kline , Robert C. Abt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Published in Bioenergy and Land Use Change (pp. 141–153). John Wiley & Sons, Inc.

Organization:
DOE
Author(s):
Nagendra Singh , Keith L. Kline , Rebecca A. Efroymson , Budhendra Bhaduri , Bridget O'Banion
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Abstract

Author(s):
Dale VH , KL Kline , ES Parish , AL Cowie , R Emory , RW Malmsheimer , R Slade , CT Smith , TB Wigley , NS Bentsen , G Berndes , P Bernier , M Brandão , H Chum , R Diaz-Chavez , G Egnell , L Gustavsson , J Schweinle , I Stupak , P Trianosky , A Walter , C Whittaker , M Brown , G Chescheir , I Dimitriou , C Donnison , A Goss Eng , KP Hoyt , JC Jenkins , K Johnson , CA Levesque , V Lockhart , MC Negri , JE Nettles , M Wellisch

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The U.S. Department of Energy’s (DOE’s) Co-Optimization (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D).

Author(s):
John Farrell , John Holladay , Robert Wagner
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This report provides a status of the markets and technology development involved in growing a domestic bioenergy economy. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets. This report is supported by the U.S.

Author(s):
Ethan Warner , Kristi Moriarty , John Lewis , Anelia Milbrandt , Amy Schwab
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This article connects the science of sustainability theory with applied aspects of sustainability deployment. A suite of 35 sustainability indicators spanning 12 environmental and socioeconomic categories has been proposed for comparing the sustainability of bioenergy production systems across different feedstock types and locations.

Author(s):
Esther S. Parish , Virginia H. Dale , Burton C. English , Samuel W. Jackson , Donald D. Tyler
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Paris Agreement and the EU Climate and Energy Framework set ambitious but necessary targets. Reducing greenhouse gas (GHG) emissions by phasing out the technologies and infrastructures that cause fossil carbon emissions is one of today’s most important challenges. In the EU, bioenergy is currently the largest renewable energy source used. Most Member States have in absolute terms increased the use of forest biomass for energy to reach their 2020 renewable energy targets.

Author(s):
Göran Berndes , Bob Abt , Antti Asikainen , Annette Cowie , Virginia Dale , Gustaf Egnell , Marcus Lindner , Luisa Marelli , David Paré , Kim Pingoud , Sonia Yeh

To date, feedstock resource assessments have evaluated cellulosic and algal feedstocks independently, without consideration of demands for, and resource allocation to, each other. We assess potential land competition between algal and terrestrial feedstocks in the United States, and evaluate a scenario in which 41.5 × 109 L yr−1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed.

Organization:
DOE
Author(s):
Langholtz, M. , A. M. Coleman , L.M. Eaton , M. S. Wigmosta , Chad Hellwinckel , Craig C. Brandt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

We propose a causal analysis framework to increase understanding of land-use change (LUC) and the reliability of LUC models. This health-sciences-inspired framework can be applied to determine probable causes of LUC in the context of bioenergy. Calculations of net greenhouse gas (GHG) emissions for LUC associated with biofuel production are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under regional (EU), national (US, UK), and state (California) regulations.

Organization:
DOE
Author(s):
Efroymson RA , Kline KL , Angelsen A , Verburg PH , Dale VH , Langeveld JWA , McBride A
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding the complex interactions among food security, bioenergy sustainability, and resource management requires a focus on specific contextual problems and opportunities. The United Nations’ 2030 Sustainable Development Goals place a high priority on food and energy security; bioenergy plays an important role in achieving both goals.

Organization:
DOE
Author(s):
Kline KL , Msangi S , Dale VH , Woods J , Souza G , Osseweijer P , Clancy J , Hilbert J , Mugera H , McDonnell P , Johnson F
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

HYSYS 8.8 file and PDF description for the process model developed in HYSYS v8.8 to co-process oxygenated biomass intermediates with petroleum vacuum gas oil (VGO) in a conventional petroleum hydrocracker. HYSYS has built-in hydrocracking/hydrotreating correlations for conventional petroleum feeds such as VGO but not for oxygenated species. The document walks through how the oxygenates were programmed into HYSYS and the simple reactions assigned to those species.

Author(s):
Mark Bearden
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Production of bioenergy from cellulosic sources is likely to increase due to mandates, tax incentives, and subsidies. However, unchecked growth in the bioenergy industry has the potential to adversely influence land use, biodiversity, greenhouse gas (GHG) emissions, and water resources. It may have unintended environmental and socioeconomic consequences. Against this backdrop, it is important to develop standards and protocols that ensure sustainable bioenergy production, promote the benefits of biofuels, and avoid or minimize potential adverse outcomes.

Author(s):
Pralhad Burli , Pankaj Lal , Bernabas Wolde , Janaki Alavalapati