Skip to main content

KDF Search Results

Displaying 81 - 100 of 312

Interest in renewable energy sources derived from plant biomass is increasing, raising concerns about fuel vs. food competition. One strategy to produce additional cellulosic biomass without reducing food-harvest potential is to grow winter cover crops after harvest of the primary summer crop. This study estimated biomass accumulation of a fall-planted winter rye (Secale cereal L.) double crop across the United States on corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] croplands.

Author(s):
Gary W. Feyereisen , Gustavo G. T. Camargo , Ryan E. Baxter , John M. Baker , Tom L. Richard

Continuous measurement of soil NO emissions is needed to constrain NO budget and emission factors. Here, we describe the performance of a low-power Teledyne NO analyzer and automated chamber system, powered by wind and solar, that can continuously measure soil NO emissions. Laboratory testing of the analyzer revealed significant temperature sensitivity, causing zero drift of -10.6 nmol mol °C. However, temperature-induced span drift was negligible, so the associated error in flux measurement for a typical chamber sampling period was on the order of 0.016 nmol m s.

Author(s):
Joel Fassbinder , Natalie M Schultz , John M. Baker , Timothy Griffis

Difficulties in accessing high-quality data on trace gas fluxes and performance of bioenergy/bioproduct feedstocks limit the ability of researchers and others to address environmental impacts of agriculture and the potential to produce feedstocks. To address those needs, the GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) and REAP (Renewable Energy Assessment Project) research programs were initiated by the USDA Agricultural Research Service (ARS).

Author(s):
S. J. Del Grosso , J. W. White , G. Wilson , B. Vandenberg , D. L. Karlen , R. F. Follett , J. M. F. Johnson , A. J. Franzluebbers , D. W. Archer , H. T. Gollany , M. A. Liebig , J. Ascough , M. Reyes-Fox , L. Pellack , J. Starr , N. Barbour , R. W. Polumsky , M. Gutwein , D. James

Cellulosic biofuel production may generate new markets and revenue for farmers. However, residue removal may cause environmental problems such as soil erosion and soil organic matter (SOM) loss. The objective of this study was to determine the amounts of residue necessary for SOM maintenance under different tillage and residue removal scenarios for corn–soybean [Zea mays L.–Glycine max (L.) Merr.] and continuous corn rotations for a site in west-central Minnesota.

Author(s):
Brent J. Dalzell , Jane M. F. Johnson , Joel Tallaksen , Deborah L. Allan , Nancy W. Barbour

Second generation ethanol bioconversion technologies are under demonstration-scale development for the production of lignocellulosic fuels to meet the US federal Renewable Fuel Standards (RFS2). Bioconversion technology utilizes the fermentable sugars generated from the cellulosic fraction of the feedstock, and most commonly assumes that the lignin fraction may be used as a source of thermal and electrical energy.

Author(s):
Ghasideh Pourhashem , Paul R Adler , Andrew J McAloon , Sabrina Spatari

This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment.

Author(s):
D. Muth, Jr. , K.M. Bryden , R.G. Nelson

Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits.

Author(s):
D. Muth, Jr. , K.M. Bryden

The database summarizes a very broad set of old and new standing biomass data from plantation-grown hardwoods and softwoods established under a wide range of conditions across the United States and Canada. The WCYP database, together with this document, is being published to disseminate information on what is available in the literature with respect to yield evaluations and to inform people that not all yield data in the open literature are suitable for evaluation of “potential” regional yields.

Author(s):
Lynn Wright

The Department of Energy (DOE) Bioenergy Technologies Office held a workshop on "Social Aspects of Bioenergy" on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The workshop addressed questions about how to measure and understand the social impacts of bioenergy production based on a set of social sustainability indicators for bioenergy that were developed by Oak Ridge National Laboratory.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers.

Author(s):
Dale, Virginia

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

Corn (Zea mays L.) residue is being considered as a feedstock for biofuels production. The impact of removing corn residue on soil productivity is not well understood. A corn-soybean [Glycine max (L.) Merr.] rotation was established in 2000 to determine the effect of removing corn residue at three rates (37, 55, and 98%) on soil organic carbon (SOC) in the 0- to 5-cm layer of soil after 8 yr. The effect of cover crops {slender wheatgrass [Agropyron caninum (L.) Beauv.] in corn and lentil (Lens culinaris Medik. variety Morton) in soybeans} on SOC was also measured.

Author(s):
Sarah J. Stetson , Shannon L. Osborne , Thomas E. Schumacher , Anna Eynard , Gabriela Chilom , James Rice , Kristine A Nichols , Joseph L. Pikul Jr

This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity.

Author(s):
D. J. Muth , D. S. McCorkle , J. B. Koch , K. M. Bryden

Agricultural residues have near-term potential as a feedstock for bioenerg y production, but their removal must be managed carefully to maintain soil health and productivity. Recent studies have shown that subfield scale variability in soil properties (e.g., slope, texture, and organic matter content) that affect grain yield significantly affect the amount of residue that can be sustainably removed from different areas within a single field.

Author(s):
D. Muth, Jr. , K.M. Bryden

Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. For example, integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment and nutrient loading in watersheds, and lower greenhouse gas fluxes.

Author(s):
Joshua Koch , David Muth , Kenneth Bryden

For the soil and plant analysis community, development and expansion of biofuels will create many opportunities to provide a wide variety of analytical services. Our objective is to explore potential areas where those services could be marketed to support sustainable development of biofuels. One of the first is to provide soil fertility and plant nutrition information for sustainable feedstock production.

Author(s):
Douglas L. Karlen , Brian J. Kerr

Corn (Zea mays L.) stover has been identified as a major feedstock for cellulosic bioenergy. This report summarizes grain and stover yield as well as N, P, and K removal at several Sun Grant Regional Partnership (SGRP) sites. National Agricultural Statistical Service (NASS) grain yields were used to assess the relevancy of plot-scale yields with county averages. Seasonal variation in weather patterns caused yields to differ substantially among sites and years. Nutrient removal estimates were significantly influenced by the sampling method (i.e.

Author(s):
Douglas L. Karlen , Stuart J. Birell , Jane M.F. Johnson , Shannon L. Osborne , Thomas E. Schumacher , Gary E. Varvel , Richard B. Ferguson , Jeff M. Novak , James R. Fredrick , John M. Baker , John A. Lamb , Paul R. Adler , Greg W. Roth , Emerson D. Nafziger

Many questions have surfaced regarding short-and long-term impacts of corn (Zea mays L.) residue removal for use in the biofuels industry. To address these concerns, a field study was established in eastern South Dakota in 2000 using no-till soil management within a 2-yr corn/soybean [Glycine max (L.) Merr.] rotation.

Author(s):
Amber L. Hammerbeck , Sarah J. Stetson , Shannon L. Osborne , Joseph L. Pikul