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Abstract

A global energy crop productivity model that provides geospatially explicit quantitative details on biomass
potential and factors affecting sustainability would be useful, but does not exist now. This study describes a

modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling.

We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized

natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and

management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simula-

tion, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate

(HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feed-

stock production potentials and effects across the globe. This modeling platform can assess soil C sequestration,
net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy

exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus,

energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass

field-trial dataset are available to support global analysis of biomass feedstock production potential and corre-

sponding metrics of sustainability.
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Introduction

Models that can incorporate management practices and

quantify environmental effects are necessary to assess

indicators of sustainability associated with deployment

of biomass crops at global scale. Models that provide

transparent evaluations of potential opportunities and

trade-offs among energy options across highly variable

agro-ecosystems would be useful for guiding policy

decisions. Geographically variable climate (e.g., precipi-

tation, temperature), soil properties, and crop manage-

ment practices (e.g., fertilizer, irrigation, tillage, seed,

and harvest) affect productivity and should be inte-

grated into a modeling architecture to reflect the impli-

cations of alternative land-use scenarios. Climate

change, geospatial allocation of land to more productive

uses, and management intensification will affect bioen-

ergy, food, and other important ecosystem services

(Millennium Ecosystem Assessment (MEA), 2005). The

use of agro-ecosystem models capable of incorporating

these factors is critical for quantifying future biological

production, as well as economic and environmental

effects (Lobell et al., 2011).

The Global Sustainable Bioenergy (GSB) project is an

international initiative that seeks to expand our under-

standing of the potential to meet a significant share of

future energy demand with bioenergy without compro-

mising production of food or environmental services

(Kline et al., 2011a; Lynd et al., 2011). The GSB project

and other recent analyses (Fischer & Schrattenholzer,

2001; Hoogwijk et al., 2003; Smeets et al., 2007; Offer-

mann et al., 2011) have highlighted a dichotomy in cur-

rent global estimates of bioenergy potential by noting

that some studies show very large potential, whereas

others show minimal potential. The recent Intergovern-

mental Panel on Climate Change (IPCC) Special Report

on Renewable Energy illustrated bioenergy supply

potentials ranging from 50 to 500 EJ yr�1 (Intergovern-

mental Panel on Climate Change (IPCC), 2011). The
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GSB project is currently assessing factors that influence

the potential for bioenergy to sustainably supply 150 EJ

annually, (target level in the IEA Blue Map Scenario

(International Energy Agency (IEA), 2010) correspond-

ing to 23% of future primary energy supply) without

compromising food production and other services.

Better data and analytical tools are necessary to develop

more consistent and reliable simulations of the potential

productivity and effects of dedicated bioenergy crops.

Effects of bioenergy production on food supply and

security reflect legitimate and important concerns that

can be addressed more effectively when production sys-

tems for both can be analyzed using an integrated

framework.

A range of process-based crop models have been suc-

cessfully adapted or developed to simulate biomass

yield for a number of emerging bioenergy crops (Nair

et al., 2012). The difficulties of conducting such simula-

tions at large scales are underscored by the lack of

high-resolution global modeling platforms and barriers

associated with availability of spatially explicit input

data, visualization, and postprocessing and analysis of

model outputs. Zhang et al. (2010) proposed a frame-

work to simulate crops in a nine-county area of south-

west Michigan using data with 56 meter resolution. A

national simulation of switchgrass and miscanthus was

conducted and highlighted the large and dynamic vari-

ability in biomass production at a spatial resolution of

32 km across the conterminous United States (Miguez

et al., 2012). However, applying high-resolution spatial-

temporal process-based models and managing corre-

sponding outputs present significant computational

challenges (Washington et al., 2009; Nichols et al., 2011),

particularly as scales increase beyond field or county

size. High-performance computing (HPC) technology

using clusters, grids, or cloud computing can be used to

scale-up from individual field-level simulations to high-

resolution global simulations. Wang et al. (2005)

designed generic software architecture for implement-

ing spatially explicit ecosystem models on computing

grids. Recently, Nichols et al. (2011) demonstrated the

potential of parallel processing in modeling agricultural

systems, achieving a 40-fold increase in speed by run-

ning 140 000 simulations concurrently on a Linux-based

computing cluster.

Although we are aware of other efforts with similar

aims, our review of the literature has not identified a

documented platform that provides a process-based

model capable of simulating dedicated bioenergy crop

production and environmental effects at a global scale.

Other efforts have focused primarily on (a) assembling

global datasets (e.g., the Global Agro-ecological Zones

datasets (FAO/IIASA, 2007), the Global Earth Observa-

tion – Benefit Estimation Project of European Union

(International Institute for Applied System Analysis

(IIASA), 2010), and databases specific to agriculture and

yields such as Monfreda et al., 2008 and Ramankutty

et al., 2008); or (b) generating productivity estimates

based on statistical reports and historic yield data (e.g.,

Mueller et al., 2012; and the Global Trade Analysis Pro-

ject (GTAP) as described by Dimaranan, 2006). Most of

these analyses did not include energy crops, focused on

a few management variables (e.g., fertilization), or were

not geospatially explicit and therefore could not down-

scale and compare simulation results to historic produc-

tion data from specific locations for validation and

calibration. Other efforts (e.g., USEPA, 2010) have

attempted to combine multiple model simulations with

datasets that estimate carbon stocks and deforestation to

calculate the effects of crop expansion, but these efforts

lack causal analysis to support the hypothetical relation-

ships, suffer from inconsistency among data sources

and model assumptions, and therefore, are also limited

in their ability to perform systematic calibration and

validation against historic data (Kline et al., 2011b). This

study does not attempt to repeat those efforts or to

address many other well-documented data-related

issues (e.g., International Institute for Applied System

Analysis (IIASA), 2010; Monfreda et al., 2008; CBES

(Center for BioEnergy Sustainability), 2009). Instead, we

focus on describing a High-Performance Computing-

Environmental Policy Integrated Climate (HPC-EPIC)

model platform and testing the hypothesis that it can

perform rapid, global-scale, biophysical process simula-

tions.

In the following sections, we describe the design of

the modeling platform, our strategy for assembling

large datasets, and methods used to calibrate and ana-

lyze a global simulation of a bioenergy crop, switch-

grass (Panicum virgatum L.). Conclusions about the

lessons learned, key problems encountered, and possi-

ble next steps to expand the utility of this modeling

platform are discussed in the final sections. Supplemen-

tal information is posted online to provide additional

details on methods, data processing efficiency, and

uncertainty.

Materials and methods

Platform design

The simulation platform is based on an analytical framework

designed for bioenergy crops and consisting of six major com-

ponents: (i) standardized natural resources datasets, (ii) global

field-trial data and crop management practices, (iii) simulation

units and management scenarios, (iv) model calibration and

validation, (v) high-performance computing (HPC) simulation,

and (vi) simulation output processing and analysis (Fig. 1). The

natural resources and management datasets provide model
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inputs of climate, soil, topography, land uses, and various

management practices commonly used by biophysical crop

models (e.g., fertilization, tillage, planting, and harvest timing).

Half-degree spatial simulation units, determined by the climate

data, are grouped by agro-ecological zones. We used HPC

clusters for performing the simulations. The final component of

the analytical framework involves the extraction and organiza-

tion of modeling outputs to databases necessary to support

analysis.

Description of EPIC and HPC-EPIC

Environmental policy integrated climate is a process-based bio-

geochemical model for the soil–crop–atmosphere continuum

(Williams et al., 1984; Izaurralde et al., 2006). Major processes

simulated by EPIC include plant growth, development and

production, nutrient cycling and nonpoint sources pollution,

hydrology, emissions of GHGs, and plant management

practices. After over 30 years of improvement and over 1000

peer-reviewed publications, the model has evolved into an

integrated tool to meet multiple needs of production estima-

tion, environmental and sustainability assessment, and climate

change (Easterling et al., 2001; Mausbach & Dedrick, 2004;

Gassman et al., 2005; Liu et al., 2008). Currently, EPIC is able to

simulate over 100 crops including 10 bioenergy crops, such as

switchgrass, miscanthus, and poplar. It has been widely cali-

brated and applied in over 30 countries and regions (Gassman

et al., 2005).

Since inception, EPIC has been applied to field- or plot-scale

production and environmental management. In more recent

years, it has been applied for regional-scale production and

environmental analyses. For example, in the Conservation

Effects Assessment Project of the U.S. Department of Agricul-

ture Natural Resource Conservation Service (USDA NRCS),

EPIC was used to estimate nutrient, soil, and carbon losses

from agriculture for the contiguous states of the United States

(Potter et al., 2004).

Our version of HPC-EPIC is described in Nichols et al. (2011).

HPC-EPIC enables the parallel execution of thousands of simu-

lations. Achieving high-speed processing involves data packag-

ing, parallelization, and dedicated processor resources. The

approach, details related to data processing efficiency and the

time requirements associated with the various steps required to

prepare and conduct the case study simulation are described in

more detail in the Supporting Online Material (SOM).

Model inputs

The specific input variables for EPIC are listed and explained

in Williams et al. (1984). Major inputs for HPC-EPIC that are

accessible from published databases include daily weather

datasets, soil properties, and landscape attributes. For the

design and testing of a global platform, we used the half-

degree global land mask from CRU-NCEP (Viovy, 2010) to gen-

erate 62 482 simulation units and to subset daily weather input

data over 30 years (1980–2010) for each of these units. Daily

CRU-NECP data consist of four sets of 6 h weather data,

including total shortwave solar radiation (w m�2), air pressure

(Pa), temperature (K), U-wind (m s�1), V-wind (m s�1), and

precipitation (mm). We developed Python scripts (as presented

in the SOM) to extract and calculate the daily radiation

(MJ m�2 d�1), maximum temperature and minimum tempera-

ture (°C), precipitation (mm), average relative humidity (%),

and average wind speed (m s�1) from the CRU-NCEP data.

Daily maximum and minimum temperatures (°C) are the high-

est and lowest temperature of the daily data, respectively.

Daily precipitation (mm) is the sum of the four, 6 h precipita-

tions (mm), and daily solar radiation (MJ m�2 d�1) is con-

verted from the sum of total shortwave solar radiations

(W m�2 s�1). Average relative humidity (%) is calculated from
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temperature (K), pressure (Pa), and air-specific humidity

(g g�1) using the equations developed by Buck (1981). Daily

average wind speed is calculated from 6 h wind speed (m s�1).

Monthly averaged weather data files were computed from the

daily weather files for use in the HPC-EPIC modeling. A total

of 62 482 weather files (one for each simulation unit) were gen-

erated.

Soil data for each simulation unit were produced from the

Harmonized World Soil Database (HWSD) (FAO/IIASA/IS-

RIC/ISSCAS/JRC, 2012). The HWSD data were first resampled

to the half-degree simulation cell mask by selecting the domi-

nant soil type within each simulation cell for two soil layers

(0–30 cm and 30–100 cm). Fractions of sand, silt and clay,

gravel content, reference bulk density, organic carbon, cation

exchange capacity, texture, and pH for the dominant soil type

were then extracted. Preliminary slope data were calculated

from 30 arc second global elevation data, GEOTOPO30 (United

States Geological Survey (USGS), 1996) using the Spatial Ana-

lyst of ArcGIS10 (ESRI, 2011). Slopes for each half-degree simu-

lation unit were the majority value resampled from the

calculated slopes at 30 arc second scale. The goal of this case

study is to test performance of the simulation platform. Given

the coarse resolution of the simulation units, we made no pre-

judgment about slope constraints on potential productivity.

The model platform allows for the inclusion of such constraints

in future simulations along with a range of management prac-

tices, from mechanized production to manual systems, depend-

ing on the slope of the terrain.

We chose switchgrass (Panicum virgatum L.) as a representa-

tive perennial bioenergy crop for this study. Switchgrass is a

C4 warm-season grass, naturally distributed in Africa, North

America, and South America (Parrish & Fike, 2005). Each eco-

type of switchgrass includes multiple cultivars. Intensive

experimental studies of switchgrass have been conducted in

North America. Studies in Asia and Europe have also been

reported (e.g., Alexopoulou et al., 2008; Ma et al., 2011). Two

identified ecotypes of switchgrass (lowland and upland) are

closely associated with climate and topographic conditions

(Sanderson et al., 1996; Casler, 2005; Parrish & Fike, 2005; Cas-

ler et al., 2007). An upland ecotype generally adapts better to

areas that are in high latitudes (>40°N or 40°S) or arid and

sloping terrain whereas a lowland ecotype switchgrass is more

suited to areas that are relatively warm (lower latitudes),

humid, and flat terrain (Casler et al., 2007).

Agronomic characteristics and management for switchgrass

cultivars in different regions were obtained from the US field-

trial database developed by Wullschleger et al. (2010). This

database was expanded by adding yield and management data

from published and unpublished research resources from other

countries. Over 1400 observations from five continents describ-

ing site, cultivar, management, harvesting practices, and yield

data were assembled. The dataset was further classified into

upland and lowland ecotypes and then screened to exclude

outlier observations that recorded extremely low or high yield

without explanation or clear description of management prac-

tices. The classification and screening process generated a total

of 84 data points across eight ecological zones that were used

for model calibration.

We used ecological zones, latitude, and slope to assign the

most suitable cultivars of switchgrass to each simulation unit.

The 20 ecological zones classified by the Food and Agricul-

tural Organization (FAO) reflect potential plant water avail-

ability and vegetation distribution from the evergreen tropical

rainforest zone to the boreal tundra zones (Forest Resources

Assessment Program (FRA) of UN-FAO, 2001). Upland eco-

type switchgrass is simulated in the arid and cold ecological

zones. Specifically, if the latitude is greater than 40°N or 40°S,

or if the majority value slope of the simulations unit (as

defined above) is greater than 5%, or if the area is located in

an arid or semiarid ecological zone, an upland switchgrass

cultivar is assumed to be planted in the area; otherwise, man-

agement and productivity files for a lowland cultivar are

applied. We selected 33 representative switchgrass cultivars

from the calibration dataset and assigned these to the simula-

tion units (Table 1).

Eighty management files were constructed for the 33

switchgrass cultivars. Each management file specified major

types of tillage, planting and harvesting dates, potential heat

units, seeding rate, fertilizer and pesticides application time

and amount, and irrigation. In this study, we designed man-

agement practices based on the databases developed by

Kiniry et al. (1996), Wullschleger et al. (2010), and Nichols

et al. (2011). For the initial design and testing of the global

platform, we simplified some management practices to facili-

tate analysis of model functions. For example, we uniformly

specified 60 kg ha�1 of nitrogen fertilizer annually, and

40 kg ha�1 phosphorus every 6 years, for all management

files. We also assumed no irrigation use and that switchgrass

is replanted every 12 years in all management files. However,

the planting and harvesting dates were derived from the

field-trials database for eight zones. Twelve ecological zones

lacked experimental data (see Table 1) and for these, we

either used data for the region with the most similar climate

or we adapted the planting and harvest dates for other major

crops grown in the zone. For example, wet and dry seasons

were considered to establish the planting and harvest dates

appropriate for tropical shrubland and tropical rainforest

zones.

Model calibration

Adequate data and methods to conduct calibration and vali-

dation are critical in developing reliable estimates of produc-

tivity and environmental effects using process-based models.

The quality and representativeness of data inputs and param-

eterization methods affect the reliability of the simulation out-

puts. In HPC-EPIC, 57 crop parameters can be adjusted for

different Switchgrass cultivars during calibration. The most

commonly used and sensitive parameters for model calibra-

tion include radiation use efficiency, leaf area indices, harvest

index, base and optimal temperature, nutrient parameters,

root ratio, and a few other physiological thresholds such as

maximum stomatal conductance, and aeration factor. These

parameters are measureable for switchgrass and should ide-

ally be calibrated although many are not reported in the

field-trial literature.

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 6, 14–25
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Our calibration strategy starts with parameter values

obtained from the literature and previous switchgrass simula-

tion (e.g., Kiniry et al., 1996, 2008, 2011; Parrish & Fike, 2005).

Separate calibrations are conducted for lowland and upland

cultivars in zones containing sufficient field-trial data. We man-

ually adjusted the radiation use efficiency, leaf area index,

plant heat unit, and plant density to best match major physio-

logical features and biomass production to the degree data per-

mit. Table 1 shows the zones and cultivars for which

calibration datasets were generated. A description of parame-

ters for the cultivars in the zones without calibration is

presented in SOM. It is noteworthy that the zones lacking field-

trial data are those least likely to be used for switchgrass pro-

duction as they encompass four high-latitude (polar) zones,

three desert zones, and five tropical zones.

The platform design includes a validation process that

could not be conducted due to data limitations. We found that

many of the observations reported from field trials could not

be used for calibration or validation because management

practices or trial conditions were not adequately specified. For

example, some field trials tested special management practices

such as multiple seasonal cuts or harvests. Other trials

reported only 2 or 3 years of data which limited their utility

for validation.

Simulation and postdata processing

After preparing model inputs and calibration, we assembled 50

packages for HPC-EPIC execution on a 56 processor Linux

cluster at Oak Ridge National Laboratory. Custom Python

scripts were developed to parse, check, and import the simula-

tion output data into an open-source PostgreSQL v8.3 database

to facilitate future validation and analysis. Using PostgreSQL

queries, we extracted data for production and environmental

Table 1 Ecotypes and cultivars of switchgrass are determined for regional calibration and global simulation with three criteria (glo-

bal ecological zone, slope, and latitude), where N/A indicates that the criterion is not applied. Latitude unit is degree. The total num-

ber of simulation units (Cells) in the region identified for a specified ecotype and cultivar, number of management practice scenarios

(Management), and number of calibration sites used in the case study (Calibration) are listed for each ecological zone. The ecological

zones are based on Forest Resources Assessment Program (FRA) of UN-FAO (2001)

Global ecological zone Slope Latitude Cells Ecotype Cultivar-ID Management Calibration

Tropical rainforest � 5% N/A 5781 Lowland 1 3 0

>5% N/A 204 Upland 2 2 0

Tropical moist deciduous forest � 5% N/A 3751 Lowland 3 3 0

>5% N/A 238 Upland 4 3 0

Tropical dry forest � 5% N/A 2720 Lowland 5 3 0

>5% N/A 144 Upland 6 3 0

Tropical shrubland � 5% N/A 62 Lowland 7 3 0

>5% N/A 2685 Upland 8 3 0

Tropical desert N/A N/A 4291 Upland 9 2 0

Tropical mountain system N/A N/A 2283 Upland 10 3 0

Subtropical humid forest � 5% N/A 1924 Lowland 11 3 3

>5% N/A 327 Upland 12 3 2

Subtropical dry forest � 5% N/A 791 Lowland 13 3 3

>5% N/A 156 Upland 14 3 3

Subtropical steppe � 5% N/A 1737 Lowland 15 3 3

>5% N/A 201 Upland 16 3 3

Subtropical desert N/A N/A 2490 Upland 17 2 0

Subtropical mountain system N/A N/A 2018 Upland 18 2 2

Temperate oceanic forest � 5% <40 1161 Lowland 19 2 1

� 5% � 40 790 Upland 20 2 3

>5% <40 69 Upland 21 2 3

Temperate continental forest � 5% <40 437 Lowland 22 2 4

� 5% � 40 26 Upland 23 2 3

>5% <40 2907 Upland 24 2 2

Temperate steppe � 5% <40 317 Lowland 25 2 4

� 5% � 40 2477 Upland 26 2 4

>5% <40 45 Upland 27 2 4

Temperate desert N/A N/A 2315 Upland 28 2 0

Temperate mountain system N/A N/A 3871 Upland 29 2 5

Boreal coniferous forest N/A N/A 5445 Upland 30 2 0

Boreal tundra woodland N/A N/A 2782 Upland 31 2 0

Boreal mountain system N/A N/A 4544 Upland 32 2 0

Polar N/A N/A 3493 Upland 33 2 0
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analysis and generated maps in ArcGIS 10 (ESRI, 2011). The

initial simulation results provide estimates of switchgrass

productivity and environmental effects across all zones

although switchgrass is not expected to be grown in zones such

as boreal mountains, tropical forests, and tundra. Switchgrass

is also unlikely to be planted extensively on current productive

cropland.

To better illustrate potential for a bioenergy crop on more

representative lands, we restricted the initial simulation

results of the projected potential switchgrass production to

pasturelands. We used the delineations in Ramankutty et al.

(2008) which identified approximately 28 million square kilo-

meters of pastureland. These pasturelands are located in 15

of the 20 ecological zones. However, the majority (about

65%) of pasturelands occur in the eight ecological zones

where field-testing data supported model calibration. For this

case study, we did not consider specialized management sys-

tems adapted to arid and highly marginal lands. Therefore,

when identifying potential biomass production, any simula-

tion units where the average annual productivity was esti-

mated to be less than 2 Mg ha�1 yr�1 were not considered.

This screening was done by converting these low-productiv-

ity simulation cells to ‘no data’ in ArcGIS and then recalcu-

lating the total available pastureland area and pastureland

switchgrass biomass productivity. The data presented in

Table 2 were calculated using national map boundaries and

zonal statistics in ArcGIS. The average annual potential

switchgrass biomass production is calculated based on

30 years of simulated production. The production values

were determined by first multiplying the average annual pro-

ductivity (Mg ha�1) by the area of the simulation unit (ha),

and then by the percentage of the simulation unit that was

in pasture (Ramankutty et al., 2008) to get average production

(Mg) per simulation unit. Then, all units are summed for a

given country (Table 2).

Results

Model calibration analysis

High-quality data are critical for successful HPC-EPIC

calibrations. Our calibration results indicated that

HPC-EPIC was able to simulate global switchgrass

productivity reasonably well, with r2 = 0.78 for lowland

ecotype cultivars and r2 = 0.55 for upland ecotype culti-

vars (Fig. 2) for the ecological zones and subzones

where data were available (Table 1). Root mean square

errors (RMSE) for the two switchgrass ecotype cultivars

are less than 3.17 Mg ha�1. The calibration for lowland

ecotype switchgrass cultivars was slightly better than

that of upland ecotype switchgrass cultivars. In general,

biomass productivity estimates for the lowland ecotype

were within 1 standard deviation of the observed val-

ues. However, HPC-EPIC overestimated productivity of

upland switchgrass ecotypes in some zones, especially

in lower yield ranges. Although the calibrations of the

different cultivars of two switchgrass ecotypes for the

eight major ecological zones appeared to be acceptable,

more data are needed to improve the calibration of

the upland ecotype, extend calibration across other

ecological zones not adequately represented in the

Table 2 The total area of pastureland, the area where simulated production exceeded the 2 Mg threshold (pastureland considered),

dry biomass production on considered pastureland, and the average annual production over the 30 year simulation on considered

pastureland are provided for selected countries

Country

Simulated

production

(106 Mg)

Average

annual yield

(Mg ha�1 yr�1)

Pastureland

considered

(103 km2)

Total

pastureland

(103 km2)

Brazil 2500 14 1700 1700

China* 1300 9 1400 2700

United States* 1100 7 1500 2200

Colombia 500 17 300 300

Australia 500 4 1200 2700

Sudan 500 7 700 1000

Russia 400 6 700 800

Mozambique 400 10 400 400

Mexico 300 6 500 600

Argentina 300 10 300 900

Madagascar 300 12 200 200

Mongolia 200 4 400 800

France* 90 9 90 100

Germany* 40 8 50 50

United Kingdom* 20 5 40 80

Italy* 20 8 30 30

*Calibration conducted.
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field-trial database, and to conduct formal validation

procedures.

Simulation results

We illustrate the simulated HPC-EPIC global biomass

production potential of switchgrass in Fig. 3a and pro-

duction on pasturelands in Fig. 3b. The potential bio-

mass productivity reported in the figures and

discussed below is the average annual value expressed

in dry Mg ha–1 yr–1 based on 30 years of switchgrass

simulation (1981–2010) for each simulation unit. The

average switchgrass productivity ranges from near zero

in boreal and desert areas to a maximum of

35 Mg ha�1 in a few simulation units in the lowland

tropics (e.g., parts of Brazil and central Africa). With

the current calibrated parameters, the areas showing

the highest potential productivity are consistently in

the moist tropics, but as noted above, these are also

areas where reliable field-trial data were not available

to support crop parameter calibration (Table 1). There-

fore, we emphasize that the biomass productivity esti-

mates in these tropical zones remain speculative until

relevant field-trial data can be assembled and ana-

lyzed.

The HPC-EPIC model simulates production potential

based on biophysical factors across the globe, regardless

of current land cover, markets, and zoning. High simu-

lated productivity does not necessarily identify the best

opportunities for cultivating switchgrass. This case

study simulates high potential productivity in areas

with favorable climate and soils even though other local

conditions and current land cover may limit or prohibit

actual cultivation. Areas with high productive potential

also include lands that have been under cultivation for

food crop production (Fig. 3a). This is not surprising

because agricultural land is expected to represent rela-

tively fertile areas in the ecological zones.

Simulated productivity on pasturelands is shown in

Fig. 3b. Although a screening procedure (see Methods)

is designed to remove lands classified as cropland, for-

ests, and others to focus only on pastureland, this visu-

alization exaggerates the pastureland area because it

portrays all simulation units reported as containing pas-

ture even though many units contain only a small por-

tion of pastureland along with other land classes.

Table 2 provides examples of estimates of total

switchgrass biomass production on pasturelands by

country. The total area of pastureland, the area where

simulated production exceeded the 2 Mg threshold

(pastureland considered), and the average annual pro-

duction over the 30-year simulation are provided for

selected countries (Table 2). While this simulation esti-

mates the highest production potential in Brazil (over

2 billion tons yr�1), this is due largely to the high aver-

age productivity which requires further data to support

model calibration. Australia has larger pastureland area

than Brazil and the United States, and Australia has

lower annual production because of low average pas-

tureland productivity as simulated by EPIC.

Environmental effects

In addition to total aboveground biomass production,

the HPC-EPIC platform has the capacity to calculate

environmental effects associated with crop management

and production, such as changes in soil organic carbon
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Fig. 2 Global calibration of switchgrass for the HPC-EPIC

model: (a) calibration for lowland ecotype switchgrass and (b)

calibration for upland ecotype switchgrass. The dashed line is

1 : 1 line, and the dotted lines show 1 standard deviation from

the 1 : 1 line.

© 2013 John Wiley & Sons Ltd, GCB Bioenergy, 6, 14–25

20 S . KANG et al.



(SOC), belowground biomass, erosion, and GHG emis-

sion. We used our switchgrass case study to estimate

changes in SOC as a demonstration of how this plat-

form could be applied to assess environmental effects of

land management choices at large scales (Fig. 4). As

illustrated, switchgrass cultivation could cause losses of

SOC in areas with low productivity because of soil dis-

turbance and biomass removal leading to greater losses

than switchgrass growth replaces. As very few data

points were available for the calibration of environmen-

tal effects of switchgrass production, calibration of SOC

changes could not be performed. Thus, the SOC simula-

tions from this initial testing of the HPC-EPIC platform

should be regarded as illustrative of model function

and capabilities, but highly uncertain in terms of abso-

lute values.

Efficiency of HPC-EPIC simulation

The primary aim of this study was to test the hypothe-

sis that an HPC-EPIC platform could be designed to

perform rapid, global-scale, biophysical process simula-

tions. The global switchgrass simulation processed

30 years of climate data, 80 management files, and over

60 000 simulation units. The simulation of 30 years of

switchgrass cultivation at a global scale required less

than 3 h using the HPC-EPIC platform on ORNL com-

puters. Approximately 12 months of research staff time

was invested to prepare data and management files

and to develop, calibrate, and test the modeling plat-

form (see SOM Figures S1 and S2). Several consider-

ations affecting the efficiency of the simulation and

modeling process, and the utility of this investment to

(b)

(a)

Fig. 3 Maps of simulated switchgrass productivity (Mg dry biomass ha–1 yr–1) on all land globally (a) and on pastureland (b) at half-

degree resolution. Note limitations on estimates for tropical areas discussed in text.
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facilitate future simulations, are further described in

the SOM.

Discussion

Uncertainty in global biomass productivity simulation of
switchgrass

All crop model simulations require data for model

input, parameterization, and validation, and the full

extent of uncertainty associated with input data and

model process relationships is often unknown and not

easily quantified. Compared with other more traditional

crops, detailed agronomic information for growth,

development, management, and environmental effects

of bioenergy crops is relatively scarce (Thomson et al.,

2005; Heaton et al., 2010; Nair et al., 2012). Major uncer-

tainties in the HPC-EPIC model simulations can be

attributed to three sources: model inputs, model param-

eters, and model calibration and validation.

We used the CRU-NCEP weather data for our simula-

tion units. Studies have reported the underestimate or

overestimates of CRU-NCEP weather variables in some

regions. Smith et al. (2001) showed that wind speeds

have been routinely underestimated in the CRU-NCEP

data, and Poccard et al. (2000) indicated that the NCEP

data underestimated precipitation during rainy season.

Underestimation of temperature and precipitation by

the CRU-NCEP reanalysis data in the Tibetan plateau

region has also been observed (Xie et al., 2007). Wind,

precipitation, and temperature influence productivity.

However, the use of 30 years of weather data and the

resolution of the simulation mitigate the influence that

these factors may have on the general productivity

patterns and results presented here. Uncertainties asso-

ciated with soil and management data inputs are dis-

cussed in the SOM.

The quality, extent, and quantity of the switchgrass

experimental trials data are perhaps the largest source

of uncertainty in this case study. Many records lacked

detailed soil, management, and other information

which affect productivity and therefore, the reliability

of global simulation results. After a careful screening

was applied to develop the calibration datasets from

field-trial data, it become impossible to conduct both

calibration and independent validation procedures.

Several tropical zones lacked the minimum data neces-

sary for calibration making simulations in those areas

particularly uncertain. Of the 20 global ecological

zones (Table 1), most bioenergy crop production is

expected to fall within just 11 zones as a large major-

ity of agriculture and pasture are located in these

areas. The field-trial dataset contained information for

calibration in eight of these eleven zones. To facilitate

expansion and sharing of data across the research

community, the switchgrass field-trial dataset used for

the case study simulations was uploaded to the Bioen-

ergy Knowledge Discovery Framework (see SOM and

the web page: https://www.bioenergykdf.net/content/

global-switchgrass-field-trial-production-and-manage

ment-dataset).

Although the HPC-EPIC platform is designed to pro-

vide extensive information on environmental indicators

associated with modeled crop production, bioenergy

crops lack sufficient data for the calibration of these

variables. Thus, the projections for changes in soil

organic carbon and similar environmental effects remain

uncertain. In addition, to estimate environmental

Fig. 4 Map illustrating soil organic carbon change (%) on pasturelands at half-degree resolution with 30 year switchgrass cultivation

simulated by the HPC-EPIC model.
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effects, crop models must incorporate baseline assump-

tions that also reflect uncertainty. As spatial scale

increases, it becomes more difficult for models to reflect

the heterogeneity and variability in baseline conditions,

disturbances, and other factors that influence environ-

mental outcomes.

Lessons learned and simulation improvement

Data collection, preparation, and postprocessing are the

most time-intensive tasks for high-resolution global sim-

ulations (Figure S3 in SOM). For example, we generated

about 250 000 input files, 625 000 output files, and an

11 GB PostgreSQL database for data processing and

analysis. Higher resolution simulations will generate

even larger data management demands. However, once

data are assembled and screened for quality, the HPC-

EPIC platform is able to run simulations quickly and to

assess different hypotheses with relatively small addi-

tional effort.

Several aspects of the current simulation platform can

be improved. First, we need to expand the number of

field trials in the switchgrass database, particularly for

tropical areas and the areas where little or no experi-

mental data are available. Environmental effects of

switchgrass production systems such as SOC change,

erosion, and GHG emission should be included in the

database for sustainability analysis although these vari-

ables are not often reported. Second, we need to further

classify calibration and validation zones and identify

the most suitable switchgrass cultivars, particularly for

future high-resolution simulations such as 1/8 degree

and 5 min resolutions. Third, we need to increase the

resolution to provide results at a scale that best meets

the needs of decision makers. The half-degree simula-

tion unit resolution in this study limits our ability to

characterize the details of biomass variability and envi-

ronmental effects in topographically complex regions.

We also need to improve the efficiency of large database

management and data analysis for higher resolution

modeling.

Future work

One of the great social and political barriers to expand-

ing biomass production for energy is the perception of

competition between biomass and food production. The

issue has been difficult to resolve for many reasons,

including the lack of modeling platforms capable of

generating accurate results while integrating complex

management and cropping systems at large scales. The

HPC-EPIC platform is positioned to help address these

questions and related queries about potential changes in

climate and water availability. However, additional

high-quality data will be needed to facilitate the future

steps outlined below.

We do not foresee significant computational barriers

to conducting higher resolution simulations as

improved datasets become available. The current frame-

work is flexible enough to accommodate simulations at

1/8 degree or 5 min, but the packaging of simulations

should be aligned with the numbers of available com-

puter nodes on a cluster. Simulation speed increases as

work is distributed across more nodes. However, higher

resolution will present new challenges for data prepara-

tion, postprocessing, and analysis. While we were able

to convert half-degree weather data into the format

required by EPIC in a few days, a more efficient data

processing method would be needed if high-resolution

simulations such as 1/8 degree or 5 min resolution are

conducted. In addition, methods used for postsimula-

tion extraction of the results from the EPIC output files

into PostgreSQL databases would require updates (Nic-

hols et al., 2011).

Modeling platforms could also be further improved

by analyzing and assembling complementary high-reso-

lution datasets on omitted factors that influence produc-

tivity and environmental effects. For example,

probabilities and risks associated with disturbances are

likely to affect potential yield and management strate-

gies. Incorporation of such factors in the modeling pro-

cess could better reflect the range of observed and

expected variability that results from cyclic drought,

common pests, fire, flooding, or climate change.

This case study documents a first effort to design and

test a platform capable of global simulation of a dedi-

cated bioenergy crop. The HPC-EPIC platform esti-

mated productivity and environmental effects of

switchgrass cultivation across the globe. This platform

can be adapted with relative ease to incorporate addi-

tional data as they become available and this will be

necessary to further calibrate switchgrass in tropical

zones. Work is also needed to parameterize and validate

process-based models for other candidate bioenergy

crops. Future plans include (i) integrating other emerg-

ing bioenergy crops (e.g., miscanthus, energy cane, and

crassulacean acid metabolism (CAM) crops) into the

simulation platform, (ii) improving the acquisition and

sharing of high-quality field experimental data for

model development and testing, and (iii) upgrading

data management for efficient execution of large-scale

simulations and processing of large input and output

datasets on a supercomputer. These modifications will

improve reliability, permit downscaling or upscaling,

and better meet the needs of policy makers and plan-

ners who require timely assessments of the opportuni-

ties and trade-offs among alternative systems to supply

food, feed, fiber, and bioenergy.
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Our approach advances prior work by demonstrating

a method that allows a spatially explicit, agro-ecosystem

process model (EPIC) to efficiently run simulations at a

global scale. The platform provides a foundation that

can support more complex modeling that incorporates

management variables, rotations, and quantification of

agricultural and bioenergy production as well as envi-

ronmental effects. Advances in global-scale process

modeling will enable the scientific community to further

evaluate sustainable bioenergy production systems for

various levels of decision making. The research team

encourages national and international collaboration to

share data and assessment results. Our hope is that by

sharing our datasets and modeling approach, we can

encourage and facilitate the collection of additional data

to permit improved simulations in the future.
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