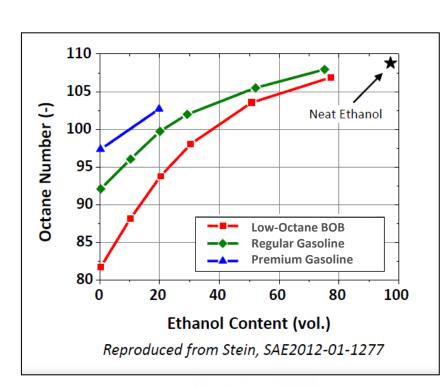

## Higher Ethanol Blends for Improved Efficiency

#### **Brian West**

Fuels, Engines, and Emissions Research Center

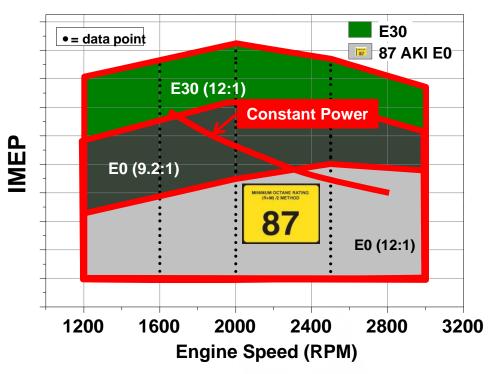
National Ethanol Conference Grapevine, TX February 20, 2015


Work Supported by U.S. Department of Energy





## Ethanol is a very effective octane booster


- ~2/3<sup>rd</sup> of octane benefit from first 1/3<sup>rd</sup> of ethanol volume percent
- EPA opened the door for a high octane
   ~E30 fuel in Tier 3 rule
  - "...we allow vehicle manufacturers to request approval for ... fuel such as a high-octane 30 percent ethanol ... blend (E30) for vehicles ... optimized for such fuel"
- Road fuel infrastructure for a mid-level ethanol blend is not trivial (but significantly less complex than many other alternatives)
  - Over 3000 E85 dispensers in service, over 17M FFVs on the road that could use an E25-E40 fuel today
  - Thousands of dispensers replaced annually.
     Invest in upgraded dispensers now

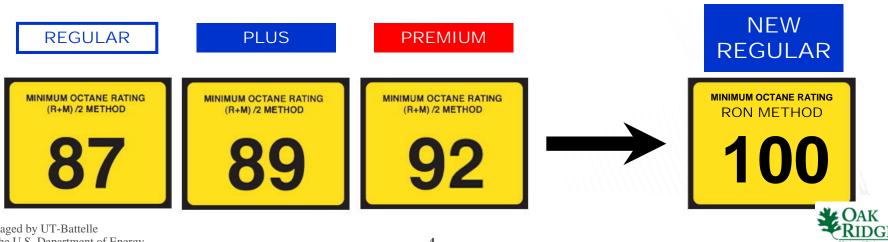




# Recent Experiments Highlight Efficiency Benefits of High Octane Fuel for SI engines

- Engines can make more torque and power with higher AKI fuel
- Ethanol is very effective at boosting anti-knock index (AKI or Octane Number)
- Increased torque enables downspeeding and downsizing for improved fuel economy
  - For future vehicles, engine and system efficiency can balance lower energy density of ethanol blends




In a <u>high compression</u> research engine, high-octane E30 enables doubling of available torque compared to 87 AKI E0 fuel

Splitter and Szybist, ORNL



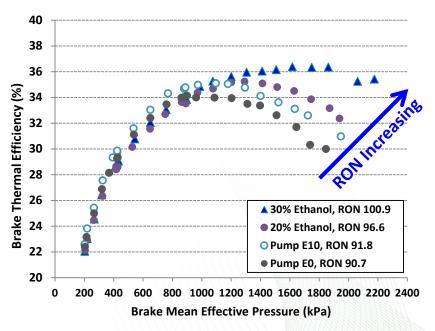
## A New High Octane Fuel Could Make Better Use of Ethanol's **Properties, Moving The Nation Toward Multiple Goals**

- **Engine efficiency can improve with increasing ethanol and octane**
- Data suggest that E25-E40 blend in future vehicles can return equivalent "tank mileage" as E10 in conventional vehicles
  - Energy density penalty is *linear* with increasing ethanol concentration,
  - Power and efficiency gains are *non-linear*
  - Volumetric Fuel Economy Parity means *every gallon* of ethanol displaces *a gallon* of gasoline
    - CAFE (fuel economy) benefit to OEM is significant
    - GHG Benefit is significant
  - Can help nation achieve RFS compliance
  - Legal to use in >17M legacy FFVs



Industry and DOE Investing In Programs to Quantify Benefits of

**High Octane Fuels in Turbo GDI Engines** 


#### **DOE** Work supported by

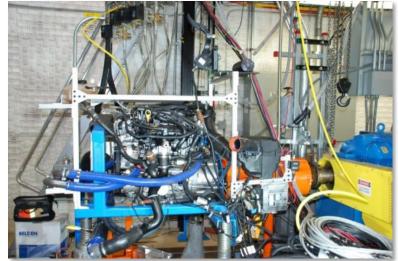
- Vehicle Technologies Office
- BioEnergy Technologies Office

#### **Industry Cost-Share, Funds-in, and Technical Support**

- Ford
- General Motors
- Coordinating Research Council
- Thermal Efficiency of Ford EcoBoost→ (data from Sluder, ORNL)








## Two Projects Using Ford 1.6 Liter EcoBoost To Explore High Octane Fuels and Engine Compression Ratio Synergies

- Turbo-charged, direct-injection engine
  - Full engine control provided by Ford
  - High compression pistons have been designed and machined
  - Supporting both DOE and CRC projects
- Fuel blends will span various octane levels with different sources of octane number
- Full Engine maps with emissions and efficiency to support vehicle modeling

Primary work supported by DOE Vehicle Technologies Office, engine and technical support from Ford

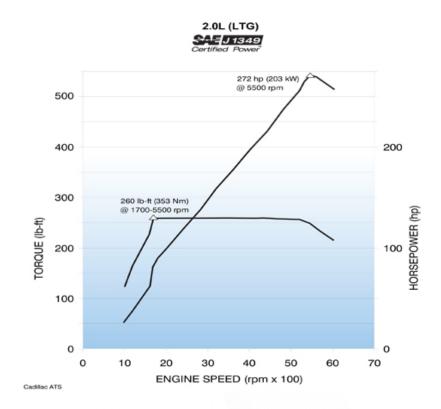
CRC funds-in effort also underway (AVFL-20)\*





<sup>\*</sup>http://www.crcao.com/about/Annual%20Report/2013%20Annual%20Report/2014%20Annual%20Report/AR2014Final.pdf




## DOE Funding Opportunity (Competitive), FOA991 Recently Awarded Gasoline Engine and Fuels Offering Reduced fuel Consumption and Emissions

- GM 2.0 LTG Engine
- Cost share with CRC
- Technical support from GM
- Target 25% reduction in petroleum consumption



Work supported by DOE Vehicle Technologies Office, engine and technical support from GM/CRC

CRC project AVFL-26\*



New LTG engine is excellent candidate for downspeeding/downsizing enabled with high-octane fuels

<sup>\*</sup>http://www.crcao.com/about/Annual%20Report/2013%20Annual%20Report/2014%20Annual%20Report/AR2014Final.pdf



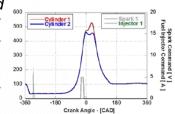
## Multi-Lab Team (NREL/ANL/ORNL) Conducting "Renewable Super Premium" (RSP) Study

**Explore Benefits/Challenges of New High-Octane Mid Level Blend** (BioEnergy Technologies Office)

- Infrastructure compatibility (NREL & ORNL)
- Market analysis (NREL & ORNL)
- Well-to-wheels analysis (ANL Lead)
- Quantification of RSP knock resistance properties (NREL)
- Fuel economy Potential In Dedicated RSP Vehicle (ORNL)
- Effect of RSP on legacy FFVs (ORNL)



## High-Octane Efficiency Benefits Demonstrated at the Vehicle Level


#### GM ATS with 2.0 Turbo GDI engine

- Same LTG engine as DOE/CRC study
- Manual Transmission will readily enable downspeeding
- Currently conducting baseline tests on range of fuels with factory pistons/calibration
- Change to high compression ratio, revise calibration
- Fuel blends will span various octane levels with different sources of octane number

#### Demonstrate downspeeding/downsizing

- Vary shift schedule and/or change final drive
- Change dyno setup to simulate larger vehicle (test weight, coefficients)

Cadillac ATS acquired. Instrumented cylinder head installed to support combustion analysis



#### GM Tech support

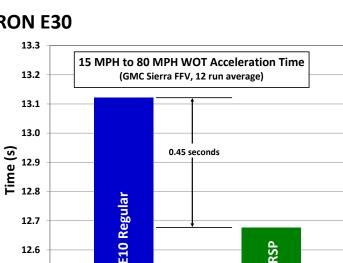
- High compression pistons
- Engine controls support (spark, boost, etc)
- ✓ Ability to monitor cylinder pressure
- Source for taller gears (final drive ratio)

Work supported by DOE Bioenergy Technologies Office, GM technical support (vehicle uses same engine as DOE FOA project [CRC AVFL-26])





## Vehicle Study to Determine Potential Performance Improvement of


**Legacy FFVs with RSP** 

Work supported by DOE Bioenergy Technologies Office

 Motivation: Measureable performance improvement in legacy FFVs could enable early adoption of "Renewable Super Premium for Your FFV"

- Acquired 4 "ethanol tolerant" FFVs
  - GMC Sierra
  - Chevrolet Impala
  - Ford F150
  - Dodge Caravan
- Prep and Baseline WOT test with 87 AKI E10
- Prep and WOT test with ~100 RON E30
- Status:
  - Experiments complete
    - Data analysis underway
    - Preliminary results →

If half FFVs on road today filled up with RSP half the time, consume half-billion gallons more ethanol!



E10

12.5

RENEWABLE SUPER PREMIUM

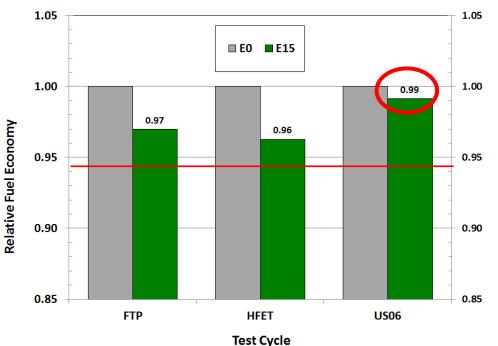
MINIMUM OCTANE RATING RON METHOD

100

E30

VEHICLE TYPE: front-engine, rear/4-wheeldrive, 5-passenger, 4-door pickup PRICE AS TESTED ..... \$47,075 BASE PRICE ...... \$42,610 ENGINE TYPE: pushrod 12-valve V-6. aluminum block and heads, direct fuel DISPLACEMENT ...... 262 cu in, 4300 cc POWER ..... 285 hp @ 5300 rpm TORQUE ...... 305 lb-ft @ 3900 rpm TRANSMISSION: 6-speed automatic with manual shifting mode DIMENSIONS WHEELBASE ..... LENGTH ...... 230.0 in WIDTH ..... 80.0 in HEIGHT ..... 74.0 in CURB WEIGHT ..... 5477 lb V C/D TEST RESULTS ZERO TO 60 MPH ZERO TO 100 MPH ...... ROLLING START, 5-60 MPH 1/4-MILE ..... 16.0 sec @ 87 mph/ TOP SPEED (governor limited) ...... 106 mph BRAKING, 70-0 MPH ...... 181 ft ROADHOLDING. 300-FT-DIA SKIDPAD ...... 0.78 g FUEL ECONOMY (gasoline) EPA CITY/HWY ..... 17/22 mpg C/D OBSERVED ..... 16 mpg

<u>Car and Driver</u> test shows 0.4 second faster 0-60 mph time on Chevrolet FFV with E85


www.caranddriver.com/reviews/2014-chevrolet-silverado-v-6-instrumented-test-review



## Benefits of Engine Downsizing with High Octane E-Blend

### **Demonstrated on Late-Model TGDI**

- E15-Compatible Ford EcoBoost Fiesta
- 1.0 liter, 3-cylinder turbo GDI engine
- Owner's Manual: "Regular unleaded gasoline...is recommended....premium fuel will provide improved performance and is recommended for severe duty usage..."
- Experiment:
  - Blend 87 AKI E0 with 15% Ethanol
  - FTP, HFET, and US06 (high-load cycle)
  - No Changes to calibration or shift schedule
  - Results within 1% of Volumetric Fuel Economy Parity with E15 on US06 test



| Fuel:            | E0      | E15     |
|------------------|---------|---------|
| RON              | 90.7    | 97.8    |
| AKI              | 87.7    | 92.6    |
| Btu/gal          | 113,100 | 106,700 |
| Relative Btu/gal | 1.00    | .943    |

Addition of 15% ethanol boosts octane, improves engine performance & efficiency.



## Regulations Have Required Many Changes in Fuels, Many in Coordination with Emissions and Fuel Economy Laws. Some examples:

| • | 1974 | Unleaded | Gasoline |
|---|------|----------|----------|
|---|------|----------|----------|

- 1979 E10 Ethanol Subsim Waiver
- 1981 Tier 0
- 1989 Phase 1 Gasoline Summer RVP Limits
- 1991 Phase 2 Gasoline Summer RVP Limits (including 1-psi E10 waiver)
- 1992 Winter Oxyfuels Program (39 cities)
- 1993 Highway diesel fuel sulfur control (500 ppm)
- 1994 Tier 1
- 1995 Phase 1 RFG and Anti-dumping
- 1996 Prohibition on lead
- 1999 NLEV
- 2000 Phase 2 RFG
- 2002 Mobil Source Air Toxics (MSAT1)
- 2004 Tier 2 Gasoline Sulfur Control (30 ppm avg, 80 cap)
- 2006 Renewable Fuels Standard
- 2006 Removal of RFG Oxy Mandate
- 2006 Ultra Low Sulfur Highway Diesel Fuel (15 ppm)
- 2006 Boutique Fuels List
- 2007 Renewable Fuel Standard (RFS)
- 2010 Ultra Low Sulfur Nonroad Diesel Fuel (15 ppm)
- 2010 Renewable Fuel Standard 2 (RFS2)
- 2010 E15 Waiver
- 2011 MSAT2 Gasoline Benzene
- 2017 Tier 3, Gasoline sulfur <10 ppm, 30 mg/mi NMOG+NOx, E10 cert fuel</li>

Regulating Octane in the US would not be a new precedent

Regular fuel in Europe is 95 RON (similar to Premium in US)



### World's Fastest Car is a Flex Fuel Vehicle

- Koenigsegg One:1
  - "one-to-one"
- 5.0 liter turbo V8
- 1341 hp with E85
  - 1161 hp with pump gasoline

Zero to 60 mph: 2.5 sec Zero to 100 mph: 4.5 sec Standing ¼-mile: 9.0 sec Top speed: 273 mph











## The Road to Higher Blends

(One Person's Opinion on Some Potential Routes)

- Maintain RFS, let RINs work
- Maintain OEM incentive to build FFVs
- Continue to build out Flex-Fuel and/or E25 Infrastructure
- Offer High-Octane E25 as "Renewable Super Premium for your FFV"
  - Conduct a Market Study!
  - Price RSP below regular, or at least between 87 octane regular and "normal premium"
    - Oil will not be \$40/bbl forever!
- Continue to expand E15
  - Avoid blending E15 with even lower octane BOB.
    - E15 in a "good" blendstock can make midgrade or premium
- Remember that Corn Ethanol is a GHG win, even when gallon of ethanol displaces
   2/3<sup>rd</sup> of gallon of gasoline
  - Cellulosic is even better
  - Both are better still when a gallon of ethanol displaces a full gallon of gasoline!
  - Don't overlook other potential fuels (e.g., butanol)
- Long range: Focus on fuel *performance*; New fuel spec for "RSP" should relate to engine anti-knock performance, not necessarily Exx.
  - Performance specification can likely be met with array of components (ethanol, butanol, bio-derived HCs, refinery streams)

### Acknowledgements

- DOE Bioenergy Technologies Office
- DOE Vehicle Technologies Office
- ORNL, NREL, and ANL colleagues
- Ford, GM, and CRC

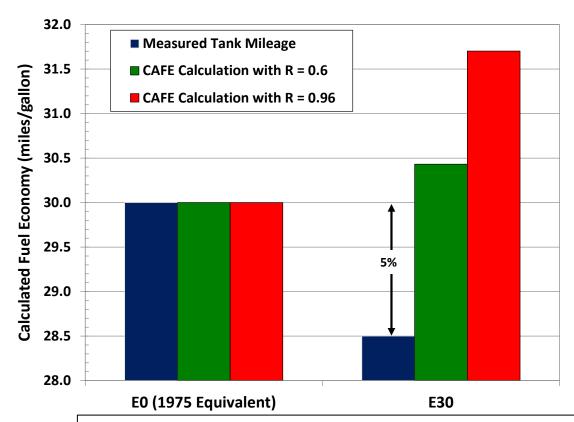


MINIMUM OCTANE RATING RON METHOD





# The EPA R Factor Equation Is Used to Adjust *Measured* Fuel Economy for CAFE Compliance


$$MPG = \frac{(5174 * 10^4 * CWF * SG)}{[((CWF * HC) + (0.429 * CO) + (0.273 * CO_2)) * (0.6 * SG * NHV) + 5471)]}$$
code of federal regulations
This is "R"

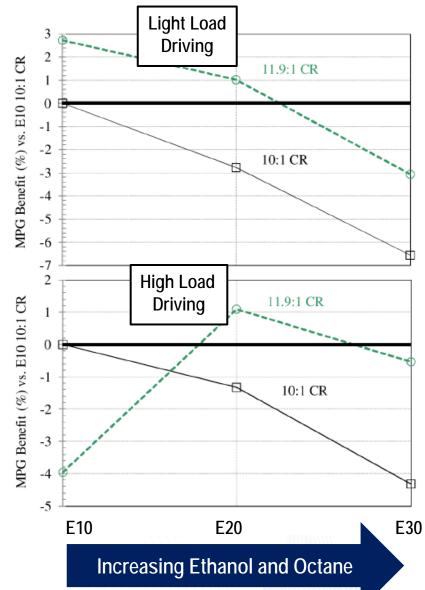
- Corporate Average Fuel Economy (CAFE) has been regulated since 1975
- "R" equation relates measured fuel economy back to 1975 E0 reference fuel (certification fuels have always been E0)
- Tier 3 requires E10 certification fuel beginning in 2017
- High Octane E20-E40 certification blend will be even more dependent on an updated R Factor



## EPA "R Factor" To Be Revised for Ethanol-blended Fuels for Fuel Economy Certification

- R is currently 0.6.
- Recent publications suggest that R should be ~0.96 for today's vehicles.
- Manufacturers will have limited incentive to certify on lower energy density fuels if R remains at 0.6.




Example for illustrative purposes. Arbitrary 30 mpg base E0 FE, arbitrary assumption that equivalent vehicle with future high compression, downspeeded engine achieves 28.5 mpg.

 With correct R Factor, high-octane mid-level blends can offer real CAFE as well as GHG benefits.



### Recent Ford Data Shows Improved Fuel Economy with High Octane Ethanol Blends

- Ford developed engine maps with three ethanol blends at 2 compression ratios
- Modeled vehicle fuel consumption
  - Changed shift schedule for modest down-speeding
- At light load (highway test)
  - Higher compression boosts fuel economy with all fuels
  - Fuel economy tracks ethanol content
- At higher loads (US06 aggressive test)
  - Higher compression boosts fuel economy with higher octane blends
- Ethanol can do so much more than bring sub-octane gasoline (BOB) up to 87 AKI and displace 2/3<sup>rds</sup> of a gallon of gasoline



Fuel Economy change versus ethanol content (from Jung, et al, SAE 2013-01-1321)

## ORNL Organized SAE High Octane Fuels Symposiums (January 2013 and 2014)

### Symposiums brought together stakeholders and technical experts

 Speakers from regulatory agencies, OEMs, energy companies, convenience stores, academia, infrastructure



#### Synergies exist between RFS and CAFE through ethanol

- Well-established efficiency benefit to high ethanol fuel blends (ORNL and others) due to high chemical octane number and high latent heat of vaporization
- Anti-knock properties of ethanol allow high compression ratio and aggressive downsizing
- Efficiency advantage can overcome energy density penalty at approx E20-E40 in optimized engine/vehicle

#### Switching to a new fuel on a national scale is significant undertaking

- EPA regulatory authority not straight-forward: reliant on GHG emissions, numerous hurdles
- OEMs conflicted: concerns over mis-fueling, fuel availability, and fuel pricing
- Oil industry opposed to new fuel: lifecycle GHG emissions unclear, RFS should be revised or repealed because of lack of cellulosic ethanol, premium grade gasoline already available
- Regulatory and infrastructure challenges are nontrivial

